Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioessays ; 46(6): e2400043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38571390

RESUMO

Volatile compounds, such as nitric oxide and ethylene gas, play a vital role as signaling molecules in organisms. Ethylene is a plant hormone that regulates a wide range of plant growth, development, and responses to stress and is perceived by a family of ethylene receptors that localize in the endoplasmic reticulum. Constitutive Triple Response 1 (CTR1), a Raf-like protein kinase and a key negative regulator for ethylene responses, tethers to the ethylene receptors, but undergoes nuclear translocation upon activation of ethylene signaling. This ER-to-nucleus trafficking transforms CTR1 into a positive regulator for ethylene responses, significantly enhancing stress resilience to drought and salinity. The nuclear trafficking of CTR1 demonstrates that the spatiotemporal control of ethylene signaling is essential for stress adaptation. Understanding the mechanisms governing the spatiotemporal control of ethylene signaling elements is crucial for unraveling the system-level regulatory mechanisms that collectively fine-tune ethylene responses to optimize plant growth, development, and stress adaptation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Transdução de Sinais , Estresse Fisiológico , Etilenos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Quinases
2.
Proteomics ; 24(6): e2300212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37876141

RESUMO

Protein-protein interactions play a crucial role in driving cellular processes and enabling appropriate physiological responses in organisms. The plant hormone ethylene signaling pathway is complex and regulated by the spatiotemporal regulation of its signaling molecules. Constitutive Triple Response 1 (CTR1), a key negative regulator of the pathway, regulates the function of Ethylene-Insensitive 2 (EIN2), a positive regulator of ethylene signaling, at the endoplasmic reticulum (ER) through phosphorylation. Our recent study revealed that CTR1 can also translocate from the ER to the nucleus in response to ethylene and positively regulate ethylene responses by stabilizing EIN3. To gain further insights into the role of CTR1 in plants, we used TurboID-based proximity labeling and mass spectrometry to identify the proximal proteomes of CTR1 in Nicotiana benthamiana. The identified proximal proteins include known ethylene signaling components, as well as proteins involved in diverse cellular processes such as mitochondrial respiration, mRNA metabolism, and organelle biogenesis. Our study demonstrates the feasibility of proximity labeling using the N. benthamiana transient expression system and identifies the potential interactors of CTR1 in vivo, uncovering the potential roles of CTR1 in a wide range of cellular processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteoma/metabolismo , Etilenos/metabolismo
3.
Nat Commun ; 14(1): 365, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690618

RESUMO

The phytohormone ethylene controls plant growth and stress responses. Ethylene-exposed dark-grown Arabidopsis seedlings exhibit dramatic growth reduction, yet the seedlings rapidly return to the basal growth rate when ethylene gas is removed. However, the underlying mechanism governing this acclimation of dark-grown seedlings to ethylene remains enigmatic. Here, we report that ethylene triggers the translocation of the Raf-like protein kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), a negative regulator of ethylene signaling, from the endoplasmic reticulum to the nucleus. Nuclear-localized CTR1 stabilizes the ETHYLENE-INSENSITIVE3 (EIN3) transcription factor by interacting with and inhibiting EIN3-BINDING F-box (EBF) proteins, thus enhancing the ethylene response and delaying growth recovery. Furthermore, Arabidopsis plants with enhanced nuclear-localized CTR1 exhibited improved tolerance to drought and salinity stress. These findings uncover a mechanism of the ethylene signaling pathway that links the spatiotemporal dynamics of cellular signaling components to physiological responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/metabolismo
4.
Methods Mol Biol ; 2213: 123-129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33270198

RESUMO

The gaseous hormone ethylene regulates a diverse range of plant development and stress responses. Ethylene biosynthesis is tightly regulated by the transcriptional and posttranscriptional regulation of ethylene biosynthetic enzymes. ACC synthase (ACS) is the rate-limiting enzyme that controls the speed of ethylene biosynthesis in plant tissues, thus serving as a primary target for biotic and abiotic stresses to modulate ethylene production. Despite the critical role of ACS in ethylene biosynthesis, only a few regulatory components regulating ACS stability or ACS transcript levels have been identified and characterized. Here we show a genetic approach for identifying novel regulatory components in ethylene biosynthesis by screening EMS-mutagenized Arabidopsis seeds.


Assuntos
Metanossulfonato de Etila/química , Etilenos/biossíntese , Testes Genéticos/métodos , Aminoácidos Cíclicos/metabolismo , Bioensaio , Citocininas/farmacologia , Genes Supressores , Mutação/genética , Fenótipo , Sementes/efeitos dos fármacos , Esterilização
5.
Plant Signal Behav ; 15(11): 1805232, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32835599

RESUMO

The gaseous phytohormone ethylene influences many aspects of plant life, including germination, fruit ripening, senescence, and stress responses. These diverse roles of ethylene occur in part through crosstalk with other phytohormones, which affects ethylene biosynthesis and signaling pathways. We have recently shown that the phytohormones, including gibberellic acid, abscisic acid, auxin, methyl jasmonate, and salicylic acid, regulate the stability of ACC synthases (ACSs), the rate-limiting enzymes in ethylene biosynthesis. Here, we report that treatment of etiolated Arabidopsis seedlings with strigolactone (SL) increases ethylene biosynthesis. SL does not influence ACS stability or ACS gene expression, but it increases the transcript levels of a subset of ACC oxidase (ACO) genes, thereby enhancing ethylene biosynthesis. Taken together with the results of our previous study, these findings demonstrate that most phytohormones differentially regulate ethylene biosynthesis in dark-grown Arabidopsis seedlings by affecting ACS stability and/or the transcript levels of ethylene biosynthesis genes.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Etilenos/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Lactonas/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Liases/genética , Liases/metabolismo
6.
Front Plant Sci ; 10: 1094, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572414

RESUMO

The inhibition of hypocotyl elongation by ethylene in dark-grown seedlings was the basis of elegant screens that identified ethylene-insensitive Arabidopsis mutants, which remained tall even when treated with high concentrations of ethylene. This simple approach proved invaluable for identification and molecular characterization of major players in the ethylene signaling and response pathway, including receptors and downstream signaling proteins, as well as transcription factors that mediate the extensive transcriptional remodeling observed in response to elevated ethylene. However, the dark-adapted early developmental stage used in these experiments represents only a small segment of a plant's life cycle. After a seedling's emergence from the soil, light signaling pathways elicit a switch in developmental programming and the hormonal circuitry that controls it. Accordingly, ethylene levels and responses diverge under these different environmental conditions. In this review, we compare and contrast ethylene synthesis, perception, and response in light and dark contexts, including the molecular mechanisms linking light responses to ethylene biology. One powerful method to identify similarities and differences in these important regulatory processes is through comparison of transcriptomic datasets resulting from manipulation of ethylene levels or signaling under varying light conditions. We performed a meta-analysis of multiple transcriptomic datasets to uncover transcriptional responses to ethylene that are both light-dependent and light-independent. We identified a core set of 139 transcripts with robust and consistent responses to elevated ethylene across three root-specific datasets. This "gold standard" group of ethylene-regulated transcripts includes mRNAs encoding numerous proteins that function in ethylene signaling and synthesis, but also reveals a number of previously uncharacterized gene products that may contribute to ethylene response phenotypes. Understanding these light-dependent differences in ethylene signaling and synthesis will provide greater insight into the roles of ethylene in growth and development across the entire plant life cycle.

7.
Mol Cells ; 41(4): 311-319, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29463069

RESUMO

The gaseous hormone ethylene influences many aspects of plant growth, development, and responses to a variety of stresses. The biosynthesis of ethylene is tightly regulated by various internal and external stimuli, and the primary target of the regulation is the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis. We have previously demonstrated that the regulation of ethylene biosynthesis is a common feature of most of the phytohormones in etiolated Arabidopsis seedlings via the modulation of the protein stability of ACS. Here, we show that various phytohormones also regulate ethylene biosynthesis from etiolated rice seedlings in a similar manner to those in Arabidopsis. Cytokinin, brassinosteroids, and gibberellic acid increase ethylene biosynthesis without changing the transcript levels of neither OsACS nor ACC oxidases (OsACO), a family of enzymes catalyzing the final step of the ethylene biosynthetic pathway. Likewise, salicylic acid and abscisic acid do not alter the gene expression of OsACS, but both hormones downregulate the transcript levels of a subset of ACO genes, resulting in a decrease in ethylene biosynthesis. In addition, we show that the treatment of the phytohormones results in distinct etiolated seedling phenotypes, some of which resemble ethylene-responsive phenotypes, while others display ethylene-independent morphologies, indicating a complicated hormone crosstalk in rice. Together, our study brings a new insight into crosstalk between ethylene biosynthesis and other phytohormones, and provides evidence that rice ethylene biosynthesis could be regulated by the post-transcriptional regulation of ACS proteins.


Assuntos
Etilenos/biossíntese , Oryza/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Oryza/genética , Reguladores de Crescimento de Plantas/genética , Plântula/genética , Plântula/metabolismo
8.
Methods Mol Biol ; 1573: 3-10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293835

RESUMO

Plants tightly regulate the biosynthesis of ethylene to control growth and development and respond to a wide range of biotic and abiotic stresses. To understand the molecular mechanism by which plants regulate ethylene biosynthesis as well as to identify stimuli triggering the alteration of ethylene production in plants, it is essential to have a reliable tool with which one can directly measure in vivo ethylene concentration. Gas chromatography is a routine detection technique for separation and analysis of volatile compounds with relatively high sensitivity. Gas chromatography has been widely used to measure the ethylene produced by plants, and has in turn become a valuable tool for ethylene research. Here, we describe a protocol for measuring the ethylene produced by dark-grown Arabidopsis seedlings using a gas chromatograph.


Assuntos
Arabidopsis/metabolismo , Cromatografia Gasosa , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Cromatografia Gasosa/métodos , Etilenos/análise , Reguladores de Crescimento de Plantas/análise
9.
Mol Cells ; 38(7): 597-603, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26095506

RESUMO

Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.


Assuntos
Aminoácido Oxirredutases/metabolismo , Arabidopsis/metabolismo , Etilenos/biossíntese , Processamento de Proteína Pós-Traducional , Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/genética , Arabidopsis/enzimologia , Fosforilação , Transdução de Sinais , Ubiquitinação
10.
Plant Signal Behav ; 8(12): e26478, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24065059

RESUMO

1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) is the key enzyme in ethylene biosynthesis, catalyzing the conversion of S-adenosylmethionine (AdoMet) to ACC, which is the immediate precursor of ethylene. The regulation of ACS protein stability plays an important role in controlling ethylene biosynthesis. We have recently shown that 14-3-3 positively regulates ACS protein stability by both a direct effect and via downregulation of the stability of the E3 ligases regulating its turnover, Ethylene Overproducer1 (ETO1)/ETO1-like (EOL). Here, we report that treatment of etiolated Arabidopsis seedlings with light rapidly increases the stability of ACS5 protein. In contrast, light destabilizes the ETO1/EOLs proteins, suggesting that light acts to increase ethylene biosynthesis in part through a decrease in the level of the ETO1/EOL proteins. This demonstrates that the ETO1/EOLs are regulated in response to at least one environmental cue and that their regulated degradation may represent a novel input controlling ethylene biosynthesis.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/efeitos da radiação , Luz , Liases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Peptídeos/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos da radiação
11.
Plant Cell ; 25(3): 1016-28, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23512855

RESUMO

14-3-3 proteins are a family of conserved phospho-specific binding proteins involved in diverse physiological processes. Plants have large 14-3-3 gene families, and many binding partners have been identified, though relatively few functions have been defined. Here, we demonstrate that 14-3-3 proteins interact with multiple 1-aminocyclopropane-1-carboxylate synthase (ACS) isoforms in Arabidopsis thaliana. ACS catalyzes the generally rate-limiting step in the biosynthesis of the phytohormone ethylene. This interaction increases the stability of the ACS proteins. 14-3-3s also interact with the ETHYLENE-OVERPRODUCER1 (ETO1)/ETO1-LIKE (EOLs), a group of three functionally redundant proteins that are components of a CULLIN-3 E3 ubiquitin ligase that target a subset of the ACS proteins for rapid degradation by the 26S proteasome. In contrast with ACS, the interaction with 14-3-3 destabilizes the ETO1/EOLs. The level of the ETO1/EOLs in vivo plays a role in mediating ACS protein turnover, with increased levels leading to a decrease in ACS protein levels. These studies demonstrate that regulation of ethylene biosynthesis occurs by a mechanism in which 14-3-3 proteins act through a direct interaction and stabilization of ACS and through decreasing the abundance of the ubiquitin ligases that target a subset of ACS proteins for degradation.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Liases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Estabilidade Enzimática , Etilenos/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular , Isoenzimas/genética , Isoenzimas/metabolismo , Liases/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapeamento de Interação de Proteínas , Transporte Proteico , Proteólise , Protoplastos/metabolismo , Ubiquitinação
12.
Proc Natl Acad Sci U S A ; 109(47): 19486-91, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23132950

RESUMO

The gaseous phytohormone ethylene C(2)H(4) mediates numerous aspects of growth and development. Genetic analysis has identified a number of critical elements in ethylene signaling, but how these elements interact biochemically to transduce the signal from the ethylene receptor complex at the endoplasmic reticulum (ER) membrane to transcription factors in the nucleus is unknown. To close this gap in our understanding of the ethylene signaling pathway, the challenge has been to identify the target of the CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) Raf-like protein kinase, as well as the molecular events surrounding ETHYLENE-INSENSITIVE2 (EIN2), an ER membrane-localized Nramp homolog that positively regulates ethylene responses. Here we demonstrate that CTR1 interacts with and directly phosphorylates the cytosolic C-terminal domain of EIN2. Mutations that block the EIN2 phosphorylation sites result in constitutive nuclear localization of the EIN2 C terminus, concomitant with constitutive activation of ethylene responses in Arabidopsis. Our results suggest that phosphorylation of EIN2 by CTR1 prevents EIN2 from signaling in the absence of ethylene, whereas inhibition of CTR1 upon ethylene perception is a signal for cleavage and nuclear localization of the EIN2 C terminus, allowing the ethylene signal to reach the downstream transcription factors. These findings significantly advance our understanding of the mechanisms underlying ethylene signal transduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Etilenos/metabolismo , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Núcleo Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Etilenos/farmacologia , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas Quinases/química , Transporte Proteico/efeitos dos fármacos , Receptores de Superfície Celular/química , Transdução de Sinais/efeitos dos fármacos
13.
PLoS Genet ; 7(4): e1001370, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21533019

RESUMO

The gaseous hormone ethylene is one of the master regulators of development and physiology throughout the plant life cycle. Ethylene biosynthesis is stringently regulated to permit maintenance of low levels during most phases of vegetative growth but to allow for rapid peaks of high production at developmental transitions and under stress conditions. In most tissues ethylene is a negative regulator of cell expansion, thus low basal levels of ethylene biosynthesis in dark-grown seedlings are critical for optimal cell expansion during early seedling development. The committed steps in ethylene biosynthesis are performed by the enzymes 1-aminocyclopropane 1-carboxylate synthase (ACS) and 1-aminocyclopropane 1-carboxylate oxidase (ACO). The abundance of different ACS enzymes is tightly regulated both by transcriptional control and by post-translational modifications and proteasome-mediated degradation. Here we show that specific ACS isozymes are targets for regulation by protein phosphatase 2A (PP2A) during Arabidopsis thaliana seedling growth and that reduced PP2A function causes increased ACS activity in the roots curl in 1-N-naphthylphthalamic acid 1 (rcn1) mutant. Genetic analysis reveals that ethylene overproduction in PP2A-deficient plants requires ACS2 and ACS6, genes that encode ACS proteins known to be stabilized by phosphorylation, and proteolytic turnover of the ACS6 protein is retarded when PP2A activity is reduced. We find that PP2A and ACS6 proteins associate in seedlings and that RCN1-containing PP2A complexes specifically dephosphorylate a C-terminal ACS6 phosphopeptide. These results suggest that PP2A-dependent destabilization requires RCN1-dependent dephosphorylation of the ACS6 C-terminus. Surprisingly, rcn1 plants exhibit decreased accumulation of the ACS5 protein, suggesting that a regulatory phosphorylation event leads to ACS5 destabilization. Our data provide new insight into the circuitry that ensures dynamic control of ethylene synthesis during plant development, showing that PP2A mediates a finely tuned regulation of overall ethylene production by differentially affecting the stability of specific classes of ACS enzymes.


Assuntos
Arabidopsis/enzimologia , Etilenos/biossíntese , Liases/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Proteína Fosfatase 2/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cantaridina/farmacologia , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Liases/genética , Mutação , Fosforilação , Proteína Fosfatase 2/genética , Processamento de Proteína Pós-Traducional , Plântula/genética , Plântula/metabolismo , Transgenes
14.
Mol Cells ; 21(1): 141-6, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16511357

RESUMO

We previously showed that NtCDPK1, a tobacco cal-cium-dependent protein kinase, interacts with and phosphorylates the Rpn3 regulatory subunit of the 26S proteasome, and that both NtCDPK1 and Rpn3 are mainly expressed in rapidly proliferating tissues, in-cluding shoot and root meristem. In this study, we ex-amined NtCDPK1 expression in roots using GUS ex-pression in transgenic Arabidopsis plants, and investi-gated its function in root development by generating transgenic tobacco plants carrying a sense NtCDPK1 transgene. GUS activity was first detected in roots two days after sowing. In later stages, strong GUS expres-sion was detected in the root meristem and elongation zone, as well as the initiation sites and branch points of lateral roots. Transgenic tobacco plants in which NtCDPK1 expression was suppressed were smaller, and their root development was abnormal, with reduced lateral root formation and less elongation. These re-sults suggest that NtCDPK1 plays a role in a signaling pathway regulating root development in tobacco.


Assuntos
Cálcio/metabolismo , Nicotiana/enzimologia , Proteínas Quinases/metabolismo , Arabidopsis/anatomia & histologia , Expressão Gênica , Fenótipo , Raízes de Plantas/anatomia & histologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Quinases/química , Proteínas Recombinantes de Fusão , Plântula/anatomia & histologia , Nicotiana/anatomia & histologia
15.
Plant J ; 33(5): 825-40, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12609025

RESUMO

Using a yeast two-hybrid system, we identified NtRpn3, a regulatory subunit of 26S proteasome, as an interacting protein of NtCDPK1 calcium-dependent protein kinase in Nicotiana tabacum. Rpn3 in yeast is an essential protein involved in proteolysis of cell cycle regulatory proteins, and the carrot homolog of Rpn3 was previously isolated as a nuclear antigen that is mainly expressed in the meristem. NtCDPK1 physically interacts with NtRpn3 in vitro in a Ca2+-independent manner and phosphorylates NtRpn3 in a Ca2+-dependent manner with Mg2+ as a cofactor. NtCDPK1 and NtRpn3 are co-localized in the nucleus, nuclear periphery, and around plasma membrane in vivo. Both NtCDPK1 and AtRpn3, an NtRpn3 homolog of Arabidopsis, are mainly expressed in the rapidly proliferating tissues including shoot and root meristems, and developing floral buds. Virus-induced gene silencing of either NtRpn3 or NtCDPK1 resulted in the phenotypes of abnormal cell morphology and premature cell death in newly emerged leaves. Finally, NtCDPK1 interacts with NtRpn3 in vivo as shown by co-immunoprecipitation. Based on these results, we propose that NtCDPK1 and NtRpn3 are interacting in a common signal transduction pathway possibly for regulation of cell division, differentiation, and cell death in tobacco.


Assuntos
Nicotiana/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteínas Quinases/metabolismo , Subunidades Proteicas/metabolismo , Cálcio/farmacologia , Ciclo Celular , Morte Celular , Divisão Celular , Tamanho Celular , Manganês/farmacologia , Peptídeo Hidrolases/genética , Fosforilação , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Subunidades Proteicas/genética , Transdução de Sinais , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA