Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513592

RESUMO

The cilium is a microtubule-based organelle that plays a pivotal role in embryonic development and maintenance of physiological functions in the human body. In addition to their function as sensors that transduce diverse extracellular signals, including growth factors, fluid flow, and physical forces, cilia are intricately involved in cell cycle regulation and preservation of DNA integrity, as their formation and resorption dynamics are tightly linked to cell cycle progression. Recently, several studies have linked defects in specific ciliary proteins to the DNA damage response. However, it remains unclear whether and how primary cilia contribute to cancer development. Mebendazole (MBZ) is an anthelmintic drug with anticancer properties in some cancer cells. MBZ is continuously being tested for clinical studies, but the precise mechanism of its anticancer activities remains unknown. Here, using Xenopus laevis embryos as a model system, we discovered that MBZ significantly hinders cilia formation and induces DNA damage. Remarkably, primary cilium-bearing cancer cells exhibited heightened vulnerability to combined treatment with MBZ and conventional anticancer drugs. Our findings shed light on the specific influence of MBZ on cilia, rather than cytosolic microtubules, in triggering DNA damage, elucidating a previously unidentified mechanism underlying potential MBZ-mediated cancer therapy.


Assuntos
Cílios , Dano ao DNA , Mebendazol , Xenopus laevis , Cílios/efeitos dos fármacos , Cílios/metabolismo , Dano ao DNA/efeitos dos fármacos , Animais , Mebendazol/farmacologia , Humanos , Antineoplásicos/farmacologia , Sinergismo Farmacológico , Linhagem Celular Tumoral , Embrião não Mamífero/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo
2.
Mol Cells ; 47(2): 100029, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38331199

RESUMO

Mitochondria are pivotal for energy regulation and are linked to cancer. Mitochondrial sirtuins, (Sirtuin) SIRT3, SIRT4, and SIRT5, play crucial roles in cancer metabolism. This review explores their impact on cellular processes, with a focus on the NAD+ interplay and the modulation of their enzymatic activities. The varied roles of SIRT3, SIRT4, and SIRT5 in metabolic adaptation and cancer are outlined, emphasizing their tumor suppressor or oncogenic nature. We propose new insights into sirtuin biology, and cancer therapeutics, suggesting an integrated proteomics and metabolomics approach for a comprehensive understanding of mitochondrial sirtuins in cancer.


Assuntos
Neoplasias , Sirtuína 3 , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuína 3/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Proteínas Mitocondriais/metabolismo , Metabolismo Energético
3.
World J Mens Health ; 42(1): 62-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171377

RESUMO

Cancer cells, which divide indefinitely and without control, are frequently exposed to various stress factors but manage to adapt and survive. The mechanisms by which cancer cells maintain cellular homeostasis and exploit stress conditions are not yet clear. Here, we elucidate the roles of diverse cellular metabolism and its regulatory mechanisms, highlighting the essential role of metabolism in cellular composition and signal transduction. Cells respond to various stresses, including DNA damage, energy stress, and oxidative stress, thereby causing metabolic alteration. We provide profound insight into the adaptive mechanisms employed by cancer cells to ensure their survival among internal and external stressors through a comprehensive analysis of the correlation between metabolic alterations and cellular stress. Furthermore, this research establishes a robust framework for the development of innovative therapeutic strategies that specifically target the cellular adaptations of cancer cells.

4.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902014

RESUMO

Gamma-aminobutyric acid (GABA) plays a crucial role in signal transduction and can function as a neurotransmitter. Although many studies have been conducted on GABA in brain biology, the cellular function and physiological relevance of GABA in other metabolic organs remain unclear. Here, we will discuss recent advances in understanding GABA metabolism with a focus on its biosynthesis and cellular functions in other organs. The mechanisms of GABA in liver biology and disease have revealed new ways to link the biosynthesis of GABA to its cellular function. By reviewing what is known about the distinct effects of GABA and GABA-mediated metabolites in physiological pathways, we provide a framework for understanding newly identified targets regulating the damage response, with implications for ameliorating metabolic diseases. With this review, we suggest that further research is necessary to develop GABA's beneficial and toxic effects on metabolic disease progression.


Assuntos
Transdução de Sinais , Ácido gama-Aminobutírico , Ácido gama-Aminobutírico/metabolismo
5.
Int J Biol Macromol ; 231: 123577, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758763

RESUMO

Aggressive tumor formation often leads to excessive anaerobic glycolysis and massive production and accumulation of lactate in the tumor microenvironment (TME). To significantly curb lactate accumulation in TME, in this study, lactate oxidase (LOX) was used as a potential therapeutic enzyme and signal regulatory protein α variant (vSIRPα) as a tumor cell targeting ligand. SpyCatcher protein and SpyTag peptide were genetically fused to LOX and vSIRPα, respectively, to form SC-LOX and ST-vSIRPα and tumor-targeting LOX/vSIRPα conjugates were constructed via a SpyCatcher/SpyTag protein ligation system. LOX/vSIRPα conjugates selectively bound to the CD47-overexpressing mouse melanoma B16-F10 cells and effectively consumed lactate produced by the B16-F10 cells, generating adequate amounts of hydrogen peroxide (H2O2), which induces drastic necrotic tumor cell death. Local treatments of B16-F10 tumor-bearing mice with LOX/vSIRPα conjugates significantly suppressed B16-F10 tumor growth in vivo without any severe side effects. Tumor-targeting vSIRPα may allow longer retention of LOX in tumor sites, effectively consuming surrounding lactate in TME and locally generating adequate amounts of cytotoxic H2O2 to suppress tumor growth. The approach restraining the local lactate concentration and H2O2 in TME using LOX and vSIRPα could offer new opportunities for developing enzyme/targeting ligand conjugate-based therapeutic tools for tumor treatment.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Animais , Camundongos , Peróxido de Hidrogênio/metabolismo , Ligantes , Necrose , Ácido Láctico , Microambiente Tumoral
6.
Toxicol Res ; 38(4): 545-555, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36277368

RESUMO

Natural killer (NK) cells are a part of the innate immune system and represent the first line of defense against infections and tumors. NK cells can eliminate tumor cells without major histocompatibility restriction and are independent of the expression of tumor-associated antigens. Therefore, they are considered an emerging tool for cancer immunotherapy. However, the general toxicity and biodistribution of NK cells after transplantation remain to be understood. This study was conducted to evaluate the general toxicity and biodistribution of human NK cells after single or repeated intravenous dosing in severely combined immunodeficient (SCID) mice. There were no test item-related toxicological changes in single and repeated administration groups. The no observed adverse effect level of human NK cells was 2 × 107 cells/head for both male and female SCID mice. Results from the biodistribution study showed that human NK cells were mainly distributed in the lungs, and a small number of the cells were detected in the liver, heart, spleen, and kidney of SCID mice, in both the single and repeated dose groups. Additionally, human NK cells were completely eliminated from all organs of the mice in the single dose group on day 7, while the cells persisted in mice in the repeated dose group until day 64. In conclusion, transplantation of human NK cells in SCID mice had no toxic effects. The cells were mainly distributed in the lungs and completely disappeared from the body over time after single or repeated intravenous administration.

7.
Mol Cell ; 81(18): 3708-3730, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547235

RESUMO

Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Doenças Metabólicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Cromatina/metabolismo , Doença , Metabolismo Energético/fisiologia , Saúde , Homeostase/fisiologia , Humanos , Imunidade/fisiologia , Lipidômica/métodos , Lipídeos/fisiologia , Doenças Metabólicas/fisiopatologia , Metabolômica/métodos , Microbiota/fisiologia
8.
Cell ; 183(7): 1848-1866.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33301708

RESUMO

Obesity is a major cancer risk factor, but how differences in systemic metabolism change the tumor microenvironment (TME) and impact anti-tumor immunity is not understood. Here, we demonstrate that high-fat diet (HFD)-induced obesity impairs CD8+ T cell function in the murine TME, accelerating tumor growth. We generate a single-cell resolution atlas of cellular metabolism in the TME, detailing how it changes with diet-induced obesity. We find that tumor and CD8+ T cells display distinct metabolic adaptations to obesity. Tumor cells increase fat uptake with HFD, whereas tumor-infiltrating CD8+ T cells do not. These differential adaptations lead to altered fatty acid partitioning in HFD tumors, impairing CD8+ T cell infiltration and function. Blocking metabolic reprogramming by tumor cells in obese mice improves anti-tumor immunity. Analysis of human cancers reveals similar transcriptional changes in CD8+ T cell markers, suggesting interventions that exploit metabolism to improve cancer immunotherapy.


Assuntos
Imunidade , Neoplasias/imunologia , Neoplasias/metabolismo , Obesidade/metabolismo , Microambiente Tumoral , Adiposidade , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Células HEK293 , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Cinética , Linfócitos do Interstício Tumoral , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Análise de Componente Principal , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteômica
9.
Cancer Res ; 80(6): 1258-1267, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31767628

RESUMO

Glioblastoma (GBM) is increasingly recognized as a disease involving dysfunctional cellular metabolism. GBMs are known to be complex heterogeneous systems containing multiple distinct cell populations and are supported by an aberrant network of blood vessels. A better understanding of GBM metabolism, its variation with respect to the tumor microenvironment, and resulting regional changes in chemical composition is required. This may shed light on the observed heterogeneous drug distribution, which cannot be fully described by limited or uneven disruption of the blood-brain barrier. In this work, we used mass spectrometry imaging (MSI) to map metabolites and lipids in patient-derived xenograft models of GBM. A data analysis workflow revealed that distinctive spectral signatures were detected from different regions of the intracranial tumor model. A series of long-chain acylcarnitines were identified and detected with increased intensity at the tumor edge. A 3D MSI dataset demonstrated that these molecules were observed throughout the entire tumor/normal interface and were not confined to a single plane. mRNA sequencing demonstrated that hallmark genes related to fatty acid metabolism were highly expressed in samples with higher acylcarnitine content. These data suggest that cells in the core and the edge of the tumor undergo different fatty acid metabolism, resulting in different chemical environments within the tumor. This may influence drug distribution through changes in tissue drug affinity or transport and constitute an important consideration for therapeutic strategies in the treatment of GBM. SIGNIFICANCE: GBM tumors exhibit a metabolic gradient that should be taken into consideration when designing therapeutic strategies for treatment.See related commentary by Tan and Weljie, p. 1231.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Xenoenxertos , Humanos , Espectrometria de Massas , Microambiente Tumoral
10.
Cell Rep ; 22(8): 1945-1955, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466723

RESUMO

Sirtuin 3 (SIRT3) is a NAD+-dependent deacetylase downregulated in aging and age-associated diseases such as cancer and neurodegeneration and in high-fat diet (HFD)-induced metabolic disorders. Here, we performed a small-molecule screen and identified an unexpected metabolic vulnerability associated with SIRT3 loss. Azaserine, a glutamine analog, was the top compound that inhibited growth and proliferation of cells lacking SIRT3. Using stable isotope tracing of glutamine, we observed its increased incorporation into de novo nucleotide synthesis in SIRT3 knockout (KO) cells. Furthermore, we found that SIRT3 KO cells upregulated the diversion of glutamine into de novo nucleotide synthesis through hyperactive mTORC1 signaling. Overexpression of SIRT3 suppressed mTORC1 and growth in vivo in a xenograft tumor model of breast cancer. Thus, we have uncovered a metabolic vulnerability of cells with SIRT3 loss by using an unbiased small-molecule screen.


Assuntos
Nucleotídeos/biossíntese , Sirtuína 3/deficiência , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Animais , Azasserina/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glutamina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Camundongos Nus , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Cancer Res ; 78(5): 1184-1199, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29259012

RESUMO

The prolyl hydroxylase domain-containing proteins (PHD1-3) and the asparaginyl hydroxlyase factor inhibiting HIF (FIH) are oxygen sensors for hypoxia-inducible factor-driven transcription of hypoxia-induced genes, but whether these sensors affect oxygen-dependent epigenetic regulation more broadly is not known. Here, we show that FIH exerts an additional role as an oxygen sensor in epigenetic control by the histone lysine methyltransferases G9a and GLP. FIH hydroxylated and inhibited G9a and GLP under normoxia. When the FIH reaction was limited under hypoxia, G9a and GLP were activated and repressed metastasis suppressor genes, thereby triggering cancer cell migration and peritoneal dissemination of ovarian cancer xenografts. In clinical specimens of ovarian cancer, expression of FIH and G9a were reciprocally associated with patient outcomes. We also identified mutations of FIH target motifs in G9a and GLP, which exhibited excessive H3K9 methylation and facilitated cell invasion. This study provides insight into a new function of FIH as an upstream regulator of oxygen-dependent chromatin remodeling. It also implies that the FIH-G9a/GLP pathway could be a potential target for inhibiting hypoxia-induced cancer metastasis.Significance: These findings deepen understanding of oxygen-dependent gene regulation and cancer metastasis in response to hypoxia. Cancer Res; 78(5); 1184-99. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Oxigenases de Função Mista/metabolismo , Neoplasias Ovarianas/patologia , Oxigênio/metabolismo , Neoplasias Peritoneais/secundário , Proteínas Repressoras/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Epigênese Genética , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Hidroxilação , Hipóxia , Camundongos , Oxigenases de Função Mista/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Prognóstico , Proteínas Repressoras/genética , Transcrição Gênica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Discov ; 7(12): 1450-1463, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28963352

RESUMO

Although agents that inhibit specific oncogenic kinases have been successful in a subset of cancers, there are currently few treatment options for malignancies that lack a targetable oncogenic driver. Nevertheless, during tumor evolution cancers engage a variety of protective pathways, which may provide alternative actionable dependencies. Here, we identify a promising combination therapy that kills NF1-mutant tumors by triggering catastrophic oxidative stress. Specifically, we show that mTOR and HDAC inhibitors kill aggressive nervous system malignancies and shrink tumors in vivo by converging on the TXNIP/thioredoxin antioxidant pathway, through cooperative effects on chromatin and transcription. Accordingly, TXNIP triggers cell death by inhibiting thioredoxin and activating apoptosis signal-regulating kinase 1 (ASK1). Moreover, this drug combination also kills NF1-mutant and KRAS-mutant non-small cell lung cancers. Together, these studies identify a promising therapeutic combination for several currently untreatable malignancies and reveal a protective nodal point of convergence between these important epigenetic and oncogenic enzymes.Significance: There are no effective therapies for NF1- or RAS-mutant cancers. We show that combined mTOR/HDAC inhibitors kill these RAS-driven tumors by causing catastrophic oxidative stress. This study identifies a promising therapeutic combination and demonstrates that selective enhancement of oxidative stress may be more broadly exploited for developing cancer therapies. Cancer Discov; 7(12); 1450-63. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1355.


Assuntos
Proteínas de Transporte/genética , Inibidores de Histona Desacetilases/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Estresse Oxidativo , Transdução de Sinais
13.
Science ; 358(6365): 941-946, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29025995

RESUMO

Ammonia is a ubiquitous by-product of cellular metabolism; however, the biological consequences of ammonia production are not fully understood, especially in cancer. We found that ammonia is not merely a toxic waste product but is recycled into central amino acid metabolism to maximize nitrogen utilization. In our experiments, human breast cancer cells primarily assimilated ammonia through reductive amination catalyzed by glutamate dehydrogenase (GDH); secondary reactions enabled other amino acids, such as proline and aspartate, to directly acquire this nitrogen. Metabolic recycling of ammonia accelerated proliferation of breast cancer. In mice, ammonia accumulated in the tumor microenvironment and was used directly to generate amino acids through GDH activity. These data show that ammonia is not only a secreted waste product but also a fundamental nitrogen source that can support tumor biomass.


Assuntos
Amônia/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Glutamato Desidrogenase/metabolismo , Aminação , Animais , Ácido Aspártico/metabolismo , Biocatálise , Proliferação de Células , Feminino , Glutamato Desidrogenase/genética , Humanos , Células MCF-7 , Camundongos , Prolina/metabolismo , RNA Interferente Pequeno/metabolismo , Microambiente Tumoral
14.
Mol Cell ; 63(6): 1006-20, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27635760

RESUMO

While much research has examined the use of glucose and glutamine by tumor cells, many cancers instead prefer to metabolize fats. Despite the pervasiveness of this phenotype, knowledge of pathways that drive fatty acid oxidation (FAO) in cancer is limited. Prolyl hydroxylase domain proteins hydroxylate substrate proline residues and have been linked to fuel switching. Here, we reveal that PHD3 rapidly triggers repression of FAO in response to nutrient abundance via hydroxylation of acetyl-coA carboxylase 2 (ACC2). We find that PHD3 expression is strongly decreased in subsets of cancer including acute myeloid leukemia (AML) and is linked to a reliance on fat catabolism regardless of external nutrient cues. Overexpressing PHD3 limits FAO via regulation of ACC2 and consequently impedes leukemia cell proliferation. Thus, loss of PHD3 enables greater utilization of fatty acids but may also serve as a metabolic and therapeutic liability by indicating cancer cell susceptibility to FAO inhibition.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Leucemia Mieloide Aguda/metabolismo , Prolina/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/química , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Células K562 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos NOD , Modelos Moleculares , Transplante de Neoplasias , Oxirredução , Prolina/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Homologia Estrutural de Proteína , Análise de Sobrevida
15.
Oncotarget ; 7(17): 23975-87, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-26992208

RESUMO

The lysyl deacetylase SIRT1 acts as a metabolic sensor in adjusting metabolic imbalance. To explore the role of SIRT1 in tumor-stroma interplay, we designed an in vivo tumor model using SIRT1-transgenic mice. B16F10 mouse melanoma grew more quickly in SIRT1-transgenic mice than in wild-type mice, whereas SIRT1-overexpressing one grew slowly in both mice. Of human tumors, SIRT1 expression in stromal fibroblasts was found to correlate with poor prognosis in ovarian cancer. B16F10 and human ovarian cancer (SKOV3 and SNU840) cells were more proliferative in co-culture with SIRT1-overexpressiong fibroblasts. In contrast, SIRT1 within cancer cells has a negative effect on cell proliferation. In conditioned media from SIRT1-overexpressing fibroblasts, matrix metalloproteinase-3 (MMP3) was identified in cytokine arrays to be secreted from fibroblasts SIRT1-dependently. Fibroblast-derived MMP3 stimulated cancer cell proliferation, and such a role of MMP3 was also demonstrated in cancer/fibroblast co-grafts. In conclusion, SIRT1 plays differential roles in cancer and stromal cells. SIRT1 in stromal cells promotes cancer growth by producing MMP3, whereas SIRT1 in cancer cells inhibits growth via an intracellular event. The present study provides a basis for setting new anticancer strategies targeting SIRT1.


Assuntos
Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/patologia , Fibroblastos/patologia , Melanoma Experimental/patologia , Neoplasias Ovarianas/patologia , Sirtuína 1/metabolismo , Células Estromais/patologia , Animais , Apoptose , Comunicação Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados , Feminino , Fibroblastos/metabolismo , Humanos , Melanoma Experimental/metabolismo , Camundongos , Camundongos Nus , Camundongos Transgênicos , Neoplasias Ovarianas/metabolismo , Células Estromais/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Allergy Clin Immunol ; 137(1): 87-98.e7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26342525

RESUMO

BACKGROUND: Nasal polyps (NPs) imply a refractory clinical course in patients with chronic rhinosinusitis (CRS). Previously, we showed that hypoxia-inducible factor (HIF) 1 could mediate nasal polypogenesis through epithelial-to-mesenchymal transition (EMT). Sirtuin 1 (SIRT1), a histone deacetylase, reportedly suppresses the transcriptional activity of HIF-1. Thus we hypothesized that SIRT1 attenuates nasal polyposis by inhibiting HIF-1-induced EMT. OBJECTIVE: We sought to determine the role of SIRT1 in patients with nasal polyposis. METHODS: The effects of SIRT1 on nasal polypogenesis were investigated in previously developed murine models. Immunohistochemistry, immunoblotting, and immunoprecipitation were done to evaluate SIRT1, EMT, and hypoxic markers in human nasal epithelial cells or sinonasal tissues from the mice and the patients with CRS with or without NPs. RESULTS: SIRT1 transgenic mice had significantly fewer mucosal lesions with epithelial disruption and fewer NPs than wild-type (WT) mice. In addition, resveratrol (a SIRT1 activator) treatment suppressed nasal polypogenesis in WT mice; however, sirtinol (a SIRT1 inhibitor) administration increased the polyp burden in SIRT1 transgenic mice. In sinonasal specimens from patients with CRS, SIRT1 was downregulated in the mucosa from patients with polyps compared with levels seen in patients without polyps. SIRT1 overexpression or activation reversed hypoxia-induced EMT in human nasal epithelial cells. The intranasal transfection of a small hairpin SIRT1 lentiviral vector induced more nasal polypoid lesions in SIRT1 transgenic mice. Finally, mucosal extracts from patients with CRS without NPs increased SIRT1 expression in nasal epithelial cells, whereas those from patients with CRS with NPs did not. CONCLUSION: SIRT1 suppressed NP formation, possibly because of inhibition of HIF-1-induced EMT. Thus nasal epithelium SIRT1 might be a therapeutic target for NPs.


Assuntos
Transição Epitelial-Mesenquimal , Pólipos Nasais/imunologia , Sirtuína 1/imunologia , Adulto , Idoso , Animais , Linhagem Celular , DNA/genética , Células Epiteliais/imunologia , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Mucosa Nasal/citologia , Ovalbumina/imunologia , Plasmídeos , RNA Interferente Pequeno , Sirtuína 1/genética
17.
Nat Commun ; 5: 5176, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25376646

RESUMO

Runt-related transcription factor 2 (Runx2) transactivates many genes required for osteoblast differentiation. The role of N-α-acetyltransferase 10 (NAA10, arrest-defective-1), originally identified in yeast, remains poorly understood in mammals. Here we report a new NAA10 function in Runx2-mediated osteogenesis. Runx2 stabilizes NAA10 in osteoblasts during BMP-2-induced differentiation, and NAA10 in turn controls this differentiation by inhibiting Runx2. NAA10 delays bone healing in a rat calvarial defect model and bone development in neonatal mice. Mechanistically, NAA10 acetylates Runx2 at Lys225, and this acetylation inhibits Runx2-driven transcription by interfering with CBFß binding to Runx2. Our study suggests that NAA10 acts as a guard ensuring balanced osteogenesis by fine-tuning Runx2 signalling in a feedback manner. NAA10 inhibition could be considered a potential strategy for facilitating bone formation.


Assuntos
Diferenciação Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Retroalimentação Fisiológica/fisiologia , Acetiltransferase N-Terminal A/fisiologia , Acetiltransferase N-Terminal E/fisiologia , Osteoblastos/citologia , Osteogênese/fisiologia , Sequência de Aminoácidos , Animais , Regeneração Óssea/fisiologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Acetiltransferase N-Terminal A/deficiência , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/deficiência , Acetiltransferase N-Terminal E/genética , Acetiltransferases N-Terminal/deficiência , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/fisiologia , Osteoblastos/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Crânio/lesões , Crânio/fisiologia , Cicatrização/fisiologia
18.
Cell Res ; 24(10): 1231-49, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25257467

RESUMO

Plant homeodomain finger protein 2 (PHF2), which contains a plant homeodomain and a Jumonji-C domain, is an epigenetic regulator that demethylates lysine 9 in histone 3 (H3K9me2). On the other hand, runt-related transcription factor 2 (Runx2) plays essential roles in bone development and regeneration. Given previous reports that the PHF2 mutation can cause dwarfism in mice and that PHF2 expression is correlated with that of Runx2 in differentiating thymocytes, we investigated whether PHF2 regulates Runx2-mediated bone formation. Overexpression of PHF2 facilitated bone development in newborn mice, and viral shRNA-mediated knockdown of PHF2 delayed calvarial bone regeneration in adult rats. In primary osteoblasts and C2C12 precursor cells, PHF2 enhances osteoblast differentiation by demethylating Runx2, while suppressor of variegation 3-9 homolog 1 (SUV39H1) inhibits bone formation by methylating it. The PHF2-Runx2 interaction is mediated by the Jumonji-C and Runt domains of the two proteins, respectively. The interaction between Runx2 and osteocalcin promoter is regulated by the methylation status of Runx2, i.e., the interaction is augmented when Runx2 is demethylated. Our results suggest that SUV39H1 and PHF2 reciprocally regulate osteoblast differentiation by modulating Runx2-driven transcription at the post-translational level. This study may provide a theoretical basis for the development of new therapeutic modalities for patients with impaired bone development or delayed fracture healing.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Histona Desmetilases/metabolismo , Proteínas de Homeodomínio/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Animais , Regeneração Óssea , Células Cultivadas , Metilação de DNA , Feminino , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Masculino , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteocalcina/genética , Osteocalcina/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , Radiografia , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/metabolismo , Crânio/diagnóstico por imagem , Crânio/fisiologia
19.
Biochem Biophys Res Commun ; 444(1): 36-43, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24423936

RESUMO

Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) determine cancer cell fate under hypoxia. Despite the similarities of their structures, HIF-1α and HIF-2α have distinct roles in cancer growth under hypoxia, that is, HIF-1α induces growth arrest whereas HIF-2α promotes cell growth. Recently, sirtuin 1 (Sirt1) was reported to fine-tune cellular responses to hypoxia by deacetylating HIF-1α and HIF-2α. Yet, the roles of Sirt1 in HIF-1α and HIF-2α functions have been controversial. We here investigated the precise roles of Sirt1 in HIF-1α and HIF-2α regulations. Immunological analyses revealed that HIF-1α K674 and HIF-2α K741 are acetylated by PCAF and CBP, respectively, but are deacetylated commonly by Sirt1. In the Gal4 reporter systems, Sirt1 was found to repress HIF-1α activity constantly in ten cancer cell-lines but to regulate HIF-2α activity cell type-dependently. Moreover, Sirt1 determined cell growth under hypoxia depending on HIF-1α and HIF-2α. Under hypoxia, Sirt1 promoted cell proliferation of HepG2, in which Sirt1 differentially regulates HIF-1α and HIF-2α. In contrast, such an effect of Sirt1 was not shown in HCT116, in which Sirt1 inactivates both HIF-1α and HIF-2α because conflicting actions of HIF-1α and HIF-2α on cell growth may be offset. Our results provide a better understanding of the roles of Sirt1 in HIF-mediated hypoxic responses and also a basic concept for developing anticancer strategy targeting Sirt1.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sirtuína 1/metabolismo , Acetilação , Sequência de Aminoácidos , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Silenciamento de Genes , Células HCT116 , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Lisina/química , Dados de Sequência Molecular , Neoplasias/metabolismo , RNA Interferente Pequeno/genética , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética
20.
Biochim Biophys Acta ; 1813(12): 2008-16, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21925214

RESUMO

HIF-1α plays a central role in cellular adaptation to hypoxia, and is closely related to the pathogeneses of life-threatening disorders. HIF-1α induces the expressions of numerous hypoxia-induced genes through two transactivation domains; N-terminal TAD (NAD) and C-terminal TAD (CAD). Furthermore, p300 is known to boost CAD-dependent transactivation, and CBP/p300-interacting transactivator with an ED-rich tail 2 (CITED2) inhibits HIF-1α-driven gene expression by interfering with the interaction between CAD and p300. However, few researches have focused on the role of CITED2 in the regulation of NAD activity, and thus, we addressed this point. CITED2 was found to attenuate the hypoxic activations of NAD-dependent and CAD-dependent genes, suggesting that CITED2 negatively regulates both CAD and NAD. Immunoprecipitation analyses showed that NAD interacts with the Cystein/Histidine region (CH) 1 and CH3 domains of p300. Moreover, CH1 and CH3 both were required for NAD-dependent transactivation. Furthermore, CITED2 was found to inactivate NAD by interfering with NAD binding to CH1, but not to CH3. These results indicate that CITED2 inactivates HIF-1α by blocking p300 recruitment by both NAD and CAD. We also found that pVHL inhibits NAD activity regardless of NAD degradation by blocking the interaction between p300 and NAD. Summarizing, NAD was activated by binding to p300, and this was blocked by either CITED2 or pVHL. We propose that pVHL controls NAD during normoxia and that CITED2 controls NAD during hypoxia. Our results provide a new strategy for controlling HIF-1α.


Assuntos
Proteína p300 Associada a E1A/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/fisiopatologia , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Western Blotting , Células Cultivadas , Proteína p300 Associada a E1A/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Técnicas Imunoenzimáticas , Imunoprecipitação , Rim/citologia , Rim/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/antagonistas & inibidores , Transativadores/genética , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido , Proteína Supressora de Tumor Von Hippel-Lindau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA