Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Aging Cell ; 23(7): e14152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38517197

RESUMO

As people age, the risk and progression of colorectal cancer (CRC), along with cholesterol levels, tend to increase. Nevertheless, epidemiological studies on serum lipids and CRC have produced conflicting results. We previously demonstrated that the reduction of squalene epoxidase (SQLE) due to accumulated cholesterol within cells accelerates CRC progression through the activation of the ß-catenin pathway. This study aimed to investigate the mechanism by which age-related cholesterol accumulation within tissue accelerates CRC progression and to assess the clinical significance of SQLE in older individuals with elevated CRC risk. Using machine learning-based digital image analysis with fluorescence-immunohistochemistry, we assessed SQLE, GSK3ßpS9 (GSK3ß activity inhibition through serine 9 phosphorylation at GSK3ß), p53 wild-type (p53WT), and p53 mutant (p53MT) levels in CRC tissues. Our analysis revealed a significant reduction in SQLE, p53WT, and p53MT and increase in GSK3ßpS9 levels, all associated with the substantial accumulation of intra-tissue cholesterol in aged CRCs. Cox analysis underscored the significant influence of SQLE on overall survival and progression-free survival in grade 2-3 CRC patients aged over 50. SQLE and GSK3ßpS9 consistently exhibited outstanding prognostic and diagnostic performance, particularly in older individuals. Furthermore, combining SQLE with p53WT, p53MT, and GSK3ßpS9 demonstrated a robust diagnostic ability in the older population. In conclusion, we have identified that individuals aged over 50 face an increased risk of CRC progression due to aging-linked cholesterol accumulation within tissue and the subsequent reduction in SQLE levels. This study also provides valuable biomarkers, including SQLE and GSK3ßpS9, for older patients at elevated risk of CRC.


Assuntos
Colesterol , Neoplasias Colorretais , Progressão da Doença , Esqualeno Mono-Oxigenase , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento/metabolismo , Colesterol/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Fatores de Risco , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/genética
2.
Cancer Cell Int ; 24(1): 73, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355643

RESUMO

BACKGROUND: Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays an important role in diverse cellular processes by regulating Rho guanosine triphosphate (GTP)ases activity. RhoGDI1 phosphorylation regulates the spatiotemporal activation of Rho GTPases during cell migration. In this study, we identified polo-like kinase 1 (PLK1) as a novel kinase of RhoGDI1 and investigated the molecular mechanism by which the interaction between RhoGDI1 and PLK1 regulates cancer cell migration. METHODS: Immunoprecipitation, GST pull-down assay, and proximity ligation assay (PLA) were performed to analyze the interaction between RhoGDI1 and PLK1. In vitro kinase assay and immunoprecipitation were performed with Phospho-(Ser/Thr) antibody. We evaluated RhoA activation using RhoGTPases activity assay. Cell migration and invasion were analyzed by transwell assays. RESULTS: GST pull-down assays and PLA showed that PLK1 directly interacted with RhoGDI1 in vitro and in vivo. Truncation mutagenesis revealed that aa 90-111 of RhoGDI1 are critical for interacting with PLK1. We also showed that PLK1 phosphorylated RhoGDI1 at Thr7 and Thr91, which induces cell motility. Overexpression of the GFP-tagged RhoGDI1 truncated mutant (aa 90-111) inhibited the interaction of PLK1 with RhoGDI1 and attenuated RhoA activation by PLK1. Furthermore, the overexpression of the RhoGDI1 truncated mutant reduced cancer cell migration and invasion in vitro and suppressed lung metastasis in vivo. CONCLUSIONS: Collectively, we demonstrate that the phosphorylation of RhoGDI1 by PLK1 promotes cancer cell migration and invasion through RhoA activation. This study connects the interaction between PLK1 and RhoGDI1 to the promotion of cancer cell behavior associated with malignant progression, thereby providing opportunities for cancer therapeutic interventions.

3.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203555

RESUMO

Sepsis is a systemic inflammatory syndrome that results in multiple-organ failure caused by a dysregulated host immune response to microbial infection. Astragali complanati semen extract (ACSE) exhibits pharmacological activities, including antioxidant, anticancer, antiaging, and anti-diabetes effects. It is widely used in traditional medicine to treat liver and kidney diseases; however, the protective effect of ACSE on sepsis and its mechanisms are unknown. In the present study, we investigated the anti-inflammatory effects and potential mechanisms of the action of ACSE on sepsis. We show that ACSE improved survival rates in mouse models of acute sepsis induced by CLP (cecal ligation and puncture) and LPS stimulation. ACSE administration decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in sepsis-induced mice. Furthermore, ACSE reduced the levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in the serum of septic mice. ACSE treatment inhibited the expression of these proinflammatory genes in LPS-stimulated J774 macrophages. Moreover, ACSE inhibited the phosphorylation of the IκB kinase (IKK) and the nuclear translocation of p65 NF-κB by LPS stimulation in macrophages. These results reveal the mechanism underlying the protective effect of ACSE against sepsis by inhibiting NF-κB activation and suggest that ACSE could be a potential therapeutic candidate to treat acute inflammatory diseases.


Assuntos
Astrágalo , Sepse , Choque Séptico , Animais , Camundongos , Lipopolissacarídeos/toxicidade , NF-kappa B , Sepse/complicações , Sepse/tratamento farmacológico , Etanol , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
4.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552865

RESUMO

Kallikrein-related peptidase (KLK)6 is associated with inflammatory diseases and neoplastic progression. KLK6 is aberrantly expressed in several solid tumors and regulates cancer development, metastatic progression, and drug resistance. However, the function of KLK6 in the tumor microenvironment remains unclear. This study aimed to determine the role of KLK6 in the tumor microenvironment. Here, we uncovered the mechanism underlying KLK6-mediated cross-talk between cancer cells and macrophages. Compared with wild-type mice, KLK6-/- mice showed less tumor growth and metastasis in the B16F10 melanoma and Lewis lung carcinoma (LLC) xenograft model. Mechanistically, KLK6 promoted the secretion of tumor necrosis factor-alpha (TNF-α) from macrophages via the activation of protease-activated receptor-1 (PAR1) in an autocrine manner. TNF-α secreted from macrophages induced the release of the C-X-C motif chemokine ligand 1 (CXCL1) from melanoma and lung carcinoma cells in a paracrine manner. The introduction of recombinant KLK6 protein in KLK6-/- mice rescued the production of TNF-α and CXCL1, tumor growth, and metastasis. Inhibition of PAR1 activity suppressed these malignant phenotypes rescued by rKLK6 in vitro and in vivo. Our findings suggest that KLK6 functions as an important molecular link between macrophages and cancer cells during malignant progression, thereby providing opportunities for therapeutic intervention.


Assuntos
Calicreínas , Melanoma , Receptor PAR-1 , Animais , Camundongos , Calicreínas/metabolismo , Macrófagos/metabolismo , Receptor PAR-1/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa
5.
Cancers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208132

RESUMO

Recently, we reported the involvement of TIPRL/LC3/CD133 in liver cancer aggressiveness. This study assessed the human TOR signaling regulator (TIPRL)/microtubule-associated light chain 3 (LC3)/prominin-1 (CD133)/cluster of differentiation 44 (CD44) as potential diagnostic and prognostic biomarkers for early liver cancer. For the assessment, we stained tissues of human liver disease/cancer with antibodies against TIPRL/LC3/CD133/CD44/CD46, followed by confocal observation. The roles of TIPRL/LC3/CD133/CD44/CD46 in liver normal and cancer cell lines were determined by in vitro studies. We analyzed the prognostic and diagnostic potentials of TIPRL/LC3/CD133/CD44/CD46 using the receiver-operating characteristic curve, a Kaplan-Meier and uni-/multi-Cox analyses. TIPRL and LC3 were upregulated in tissues of HCCs and adult hepatocytes-derived liver diseases while downregulated in iCCA. Intriguingly, TIPRL levels were found to be critically associated with liver cancer patients' survivability, and TIPRL is the key player in liver cancer cell proliferation and viability via stemness and self-renewal induction. Furthermore, we demonstrate that TIPRL/LC3/CD133 have shown prominent efficiency for diagnosing patients with grade 1 iCCA. TIPRL/LC3/CD133/CD44 have also provided excellent potential for prognosticating patients with grade 1 iCCA and grade 1 HCCs, together with demonstrating that TIPRL/LC3/CD133/CD44 are, either individually or in conjunction, potential biomarkers for early liver cancer.

6.
Oncol Rep ; 45(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33655336

RESUMO

Radiation therapy is an effective treatment against various types of cancer, but some radiation­resistant cancer cells remain a major therapeutic obstacle; thus, understanding radiation resistance mechanisms is essential for cancer treatment. In this study, we established radiation­resistant colon cancer cell lines and examined the radiation­induced genetic changes associated with radiation resistance. Using RNA­sequencing analysis, collapsin response mediator protein 4 (CRMP4) was identified as the candidate gene associated with radiation sensitivity. When cells were exposed to radiation, intracellular Ca2+ influx, collapse of mitochondrial membrane potential, and cytochrome c release into the cytosol were increased, followed by apoptosis induction. Radiation treatment­ or Ca2+ ionophore A23187­induced apoptosis was significantly inhibited in CRMP4­deficient cells, including radiation­resistant or CRMP4­shRNA cell lines. Furthermore, treatment of CRMP4­deficient cells with low levels (<5 µM) of BAPTA­AM, a Ca2+ chelator, resulted in radiation resistance. Conversely, Ca2+ deficiency induced by a high BAPTA­AM concentration (>10 µM) resulted in higher cell death in the CRMP4­depleted cells compared to CRMP4­expressing control cells. Our results suggest that CRMP4 plays an important role in Ca2+­mediated cell death pathways under radiation exposure and that CRMP4 may be a therapeutical target for colon cancer treatment.


Assuntos
Cálcio/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/radioterapia , Proteínas Musculares/metabolismo , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Humanos , Proteínas Musculares/efeitos da radiação , Tolerância a Radiação , Análise de Sequência de RNA , Transdução de Sinais/efeitos da radiação
7.
Sci Rep ; 9(1): 16802, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727942

RESUMO

Studies have reported dysregulation of TIPRL, LC3 and CD133 in liver cancer tissues. However, their respective relationships to liver cancer and roles as biomarkers for prognosis and diagnosis of liver cancer have never been studied. Here we report that the level of TIPRL is significantly correlated with levels of LC3 (Spearman r = 0.9) and CD133 (r = 0.7) in liver cancer tissues. We observed significant upregulations of TIPRL, LC3 and CD133 in hepatocellular carcinomas (HCCs) compared with adjacent normal tissues. Importantly, TIPRL, tested among additional variables, showed a significant impact on the prognosis of HCC patients. TIPRL knockdown significantly reduced expressions of LC3, CD133, stemness-related genes, as well as viability and stemness of liver cancer cell-lines, which were promoted by ectopic TIPRL expression. Either alone or as a combination, TIPRL, LC3 and CD133 showed significant values of area under the curve (AUC) and sensitivity/specificity in early liver cancer tissues. Furthermore, the statistical association and the diagnostic efficacies of TIPRL, LC3 and CD133 in HCC tissues were confirmed in a different IHC cohort. This data demonstrates that the complex involvement of TIPRL/LC3/CD133 in liver cancer aggressiveness can together or individually serve as potential biomarkers for the early detection of liver cancer.


Assuntos
Antígeno AC133/metabolismo , Carcinoma Hepatocelular/diagnóstico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/diagnóstico , Proteínas Associadas aos Microtúbulos/metabolismo , Regulação para Cima , Antígeno AC133/genética , Área Sob a Curva , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Estudos de Coortes , Detecção Precoce de Câncer , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Células-Tronco Neoplásicas/metabolismo , Prognóstico
8.
Cancers (Basel) ; 11(4)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965648

RESUMO

Resistance to radiotherapy is considered an important obstacle in the treatment of colorectal cancer. However, the mechanisms that enable tumor cells to tolerate the effects of radiation remain unclear. Moreover, radiotherapy causes accumulated mutations in transcription factors, which can lead to changes in gene expression and radiosensitivity. This phenomenon reduces the effectiveness of radiation therapy towards cancer cells. In the present study, radiation-resistant (RR) cancer cells were established by sequential radiation exposure, and hemoglobin subunit epsilon 1 (HBE1) was identified as a candidate radiation resistance-associated protein based on RNA-sequencing analysis. Then, compared to radiosensitive (RS) cell lines, the overexpression of HBE1 in RR cell lines was used to measure various forms of radiation-induced cellular damage. Consequently, HBE1-overexpressing cell lines were found to exhibit decreased radiation-induced intracellular reactive oxygen species (ROS) production and cell mortality. Conversely, HBE1 deficiency in RR cell lines increased intracellular ROS production, G2/M arrest, and apoptosis, and decreased clonogenic survival rate. These effects were reversed by the ROS scavenger N-acetyl cysteine. Moreover, HBE1 overexpression was found to attenuate radiation-induced endoplasmic reticulum stress and apoptosis via an inositol-requiring enzyme 1(IRE1)-Jun amino-terminal kinase (JNK) signaling pathway. In addition, increased HBE1 expression induced by γ-irradiation in RS cells attenuated expression of the transcriptional regulator BCL11A, whereas its depletion in RR cells increased BCL11A expression. Collectively, these observations indicate that the expression of HBE1 during radiotherapy might potentiate the survival of radiation-exposed colorectal cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA