Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Surg Case Rep ; 2023(10): rjad601, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37942340

RESUMO

Spindle cell tumors exhibit a relatively low occurrence rate and can manifest in various locations within the human body, including soft tissues and bones. The process of making a diagnosis is supported by conducting pathological and immunohistochemical tests. A 50-year-old female patient visited the hospital with abdominal pain that lasted about a week. Magnetic resonance imaging of the pelvis showed that this mass was independent and was not a lymph node mass, but a retroperitoneal sarcoma type mass. As part of the treatment, the mass was surgically excised, and a supracervical hysterectomy was carried out. The tumor was wrapped in a grayish-white capsule and showed a lobulating pattern. Retroperitoneal spindle cell tumors, particularly those occurring in abdominal soft tissues, are infrequently observed. Histopathological diagnosis is done in stages, and when cases are ambiguous, immunohistochemistry can provide valuable guidance in the right direction.

2.
Comput Methods Programs Biomed ; 235: 107546, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068450

RESUMO

BACKGROUND AND OBJECTIVE: Brain tumor is a global health concern at the moment. Thus far, the only treatments available are radiotherapy and chemotherapy, which have several drawbacks such as low survival rates and low treatment efficacy due to obstruction of the blood-brain barrier. Magnetic hyperthermia (MH) using magnetic nanoparticles (MNPs) is a promising non-invasive approach that has the potential for tumor treatment in deep tissues. Due to the limitations of the current drug-targeting systems, only a small proportion of the injected MNPs can be delivered to the desired area and the rest are distributed throughout the body. Thus, the application of conventional MH can lead to damage to healthy tissues. METHODS: Magnetic particle imaging (MPI)-guided treatment platform for MH is an emerging approach that can be used for spatial localization of MH to arbitrarily selected regions by using the MPI magnetic field gradient. Although the feasibility of this method has been demonstrated experimentally, a multidimensional prediction model, which is of crucial importance for treatment planning, has not yet been developed. Hence, in this study, the time dependent magnetization equation derived by Martsenyuk, Raikher, and Shliomis (which is a macroscopic equation of motion derived from the Fokker-Planck equation for particles with Brownian relaxation mechanism) and the bio-heat equations have been used to develop and investigate a three-dimensional model that predicts specific loss power (SLP), its spatio-thermal resolution (temperature distribution), and the fraction of damage in brain tumors. RESULTS: Based on the simulation results, the spatio-thermal resolution in focused heating depends, in a complex manner, on several parameters ranging from MNPs properties to magnetic fields characteristics, and coils configuration. However, to achieve a high performance in focused heating, the direction and the relative amplitude of the AC magnetic heating field with respect to the magnetic field gradient are among the most important parameters that need to be optimized. The temperature distribution and fraction of the damage in a simple brain model bearing a tumor were also obtained. CONCLUSIONS: The complexity in the relationship between the MNPs properties and fields parameter imposes a trade-off between the heating efficiency of MNPs and the accuracy (resolution) of the focused heating. Therefore, the system configuration and field parameters should be chosen carefully for each specific treatment scenario. In future, the results of the model are expected to lead to the development of an MPI-guided MH treatment platform for brain tumor therapy. However, for more accurate quantitative results in such a platform, a magnetization dynamics model that takes into account coupled Néel-Brownian relaxation mechanism in the MNPs should be developed.


Assuntos
Neoplasias Encefálicas , Hipertermia Induzida , Humanos , Hipertermia Induzida/métodos , Modelos Teóricos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Campos Magnéticos , Encéfalo/diagnóstico por imagem
3.
J Occup Health ; 65(1): e12380, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36694993

RESUMO

OBJECTIVE: This study examined the association between maternal occupational status and adverse pregnancy outcomes in the general South Korean population. METHODS: We analyzed 1 825 845 employed and non-employed women with a diagnostic code for pregnancy in the National Health Insurance Service (NHIS) database (2010-2019) of South Korea. Based on their employment status and type of occupation, we calculated risk ratios for three adverse outcomes: early abortive outcomes (miscarriage, ectopic pregnancy, and molar pregnancy), stillbirth, and no live birth (diagnosis of pregnancy with no record of live birth thereafter, which include early abortive outcomes and stillbirth) with adjusting for covariates. RESULTS: Overall, 18.0%, 0.7%, and 39.8% ended in early abortive outcomes, stillbirths, and no live births, respectively. The risk of early abortive outcomes and stillbirths was higher in non-employed women than in employed women, while no live births were more frequent in employed women. Those in the health and social work industry showed the highest risk of no live births. Manufacturing jobs (1.030, 95% CI: 1.013, 1.047) and health/social work (1.029, 95% CI: 1.012, 1.046) were associated with an increased risk of early abortive outcomes compared with financial and insurance jobs. Consistently higher risks of no live births were observed in the manufacturing, wholesale/retail trade, education, health/social work, and public/social/personal service occupation. CONCLUSION: Employment during pregnancy and several occupation types were associated with a higher risk of pregnancy loss. Additional research using detailed job activity data is needed to determine specific occupational causes of adverse pregnancy outcomes.


Assuntos
Resultado da Gravidez , Natimorto , Gravidez , Feminino , Humanos , Resultado da Gravidez/epidemiologia , Natimorto/epidemiologia , Ocupações , Indústrias , Emprego
4.
Int J Nanomedicine ; 17: 31-44, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023918

RESUMO

INTRODUCTION: Iron oxide magnetic nanoparticles (IONPs) have attracted considerable attention for various biomedical applications owing to their ease of synthesis, strong magnetic properties, and biocompatibility. In particular, IONPs can generate heat under an alternating magnetic field, the effects of which have been extensively studied for magnetic hyperthermia therapy. However, the development of IONPs with high heating efficiency, biocompatibility, and colloidal stability in physiological environments is still required for their safe and effective application in biomedical fields. METHODS: We synthesized magnetic IONP/polymer nanocomposites (MNCs) by embedding IONPs in a poly(L-lactic acid) (PLA) matrix via nanoemulsion. The IONP contents (Fe: 9-22 [w/w]%) in MNCs were varied to investigate their effects on the magnetic and hyperthermia performances based on their optimal interparticle interactions. Further, we explored the stability, cytocompatibility, biodistribution, and in vivo tissue compatibility of the MNCs. RESULTS: The MNCs showed enhanced heating efficiency with over two-fold increase compared to nonembedded bare IONPs. The relationship between the IONP content and heating performance in MNCs was nonmonotonous. The highest heating performance was obtained from MNC2, which contain 13% Fe (w/w), implying that interparticle interactions in MNCs can be optimized to achieve high heating performance. In addition, the MNCs exhibited good colloidal stability under physiological conditions and maintained their heating efficiency during 48 h of incubation in cell culture medium. Both in vitro and in vivo studies revealed excellent biocompatibility of the MNC. CONCLUSION: Our nanocomposites, comprising biocompatible IONPs and PLA, display improved heating efficiency, good colloidal stability, and cytocompatibility, and thus will be beneficial for diverse biomedical applications, including magnetic hyperthermia for cancer treatment.


Assuntos
Hipertermia Induzida , Nanocompostos , Biosseguridade , Compostos Férricos , Campos Magnéticos , Poliésteres , Distribuição Tecidual
5.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445603

RESUMO

In magnetic hyperthermia, magnetic nanoparticles (MNPs) are used to generate heat in an alternating magnetic field to destroy cancerous cells. This field can be continuous or pulsed. Although a large amount of research has been devoted to studying the efficiency and side effects of continuous fields, little attention has been paid to the use of pulsed fields. In this simulation study, Fourier's law and COMSOL software have been utilized to identify the heating power necessary for treating breast cancer under blood flow and metabolism to obtain the optimized condition among the pulsed powers for thermal ablation. The results showed that for small source diameters (not larger than 4 mm), pulsed powers with high duties were more effective than continuous power. Although by increasing the source domain the fraction of damage caused by continuous power reached the damage caused by the pulsed powers, it affected the healthy tissues more (at least two times greater) than the pulsed powers. Pulsed powers with high duty (0.8 and 0.9) showed the optimized condition and the results have been explained based on the Arrhenius equation. Utilizing the pulsed powers for breast cancer treatment can potentially be an efficient approach for treating breast tumors due to requiring lower heating power and minimizing side effects to the healthy tissues.


Assuntos
Neoplasias da Mama/terapia , Simulação por Computador , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/administração & dosagem , Modelos Teóricos , Software , Feminino , Humanos , Nanopartículas de Magnetita/química
6.
Mar Drugs ; 19(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922418

RESUMO

Scleroderma is an autoimmune disease caused by the abnormal regulation of extracellular matrix synthesis and is activated by non-regulated inflammatory cells and cytokines. Echinochrome A (EchA), a natural pigment isolated from sea urchins, has been demonstrated to have antioxidant activities and beneficial effects in various disease models. The present study demonstrates for the first time that EchA treatment alleviates bleomycin-induced scleroderma by normalizing dermal thickness and suppressing collagen deposition in vivo. EchA treatment reduces the number of activated myofibroblasts expressing α-SMA, vimentin, and phosphorylated Smad3 in bleomycin-induced scleroderma. In addition, it decreased the number of macrophages, including M1 and M2 types in the affected skin, suggesting the induction of an anti-inflammatory effect. Furthermore, EchA treatment markedly attenuated serum levels of inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ, in a murine scleroderma model. Taken together, these results suggest that EchA is highly useful for the treatment of scleroderma, exerting anti-fibrosis and anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Naftoquinonas/farmacologia , Escleroderma Sistêmico/prevenção & controle , Pele/efeitos dos fármacos , Actinas/metabolismo , Animais , Bleomicina , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/imunologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fosforilação , Células RAW 264.7 , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/patologia , Proteína Smad3/metabolismo , Vimentina/metabolismo
7.
Nanomaterials (Basel) ; 11(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922608

RESUMO

Multifunctional magnetic nanomaterials displaying high specific loss power (SLP) and high imaging sensitivity with good spatial resolution are highly desired in image-guided cancer therapy. Currently, commercial nanoparticles do not sufficiently provide such multifunctionality. For example, Resovist® has good image resolution but with a low SLP, whereas BNF® has a high SLP value with very low image resolution. In this study, hydrophilic magnesium iron oxide@tetramethyl ammonium hydroxide nanoparticles were prepared in two steps. First, hydrophobic magnesium iron oxide nanoparticles were fabricated using a thermal decomposition technique, followed by coating with tetramethyl ammonium hydroxide. The synthesized nanoparticles were characterized using XRD, DLS, TEM, zeta potential, UV-Vis spectroscopy, and VSM. The hyperthermia and imaging properties of the prepared nanoparticles were investigated and compared to the commercial nanoparticles. One-dimensional magnetic particle imaging indicated the good imaging resolution of our nanoparticles. Under the application of a magnetic field of frequency 614.4 kHz and strength 9.5 kA/m, nanoparticles generated heat with an SLP of 216.18 W/g, which is much higher than that of BNF (14 W/g). Thus, the prepared nanoparticles show promise as a novel dual-functional magnetic nanomaterial, enabling both high performance for hyperthermia and imaging functionality for diagnostic and therapeutic processes.

8.
Nanomaterials (Basel) ; 9(8)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426427

RESUMO

Magnetic nanoparticles (MNPs) that exhibit high specific loss power (SLP) at lower metal content are highly desirable for hyperthermia applications. The conventional co-precipitation process has been widely employed for the synthesis of magnetic nanoparticles. However, their hyperthermia performance is often insufficient, which is considered as the main challenge to the development of practicable cancer treatments. In particular, ferrite MNPs have unique properties, such as a strong magnetocrystalline anisotropy, high coercivity, and moderate saturation magnetization, however their hyperthermia performance needs to be further improved. In this study, cobalt ferrite (CoFe2O4) and zinc cobalt ferrite nanoparticles (ZnCoFe2O4) were prepared to achieve high SLP values by modifying the conventional co-precipitation method. Our modified method, which allows for precursor material compositions (molar ratio of Fe+3:Fe+2:Co+2/Zn+2 of 3:2:1), is a simple, environmentally friendly, and low temperature process carried out in air at a maximum temperature of 60 °C, without the need for oxidizing or coating agents. The particles produced were characterized using multiple techniques, such as X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis spectroscopy), and a vibrating sample magnetometer (VSM). SLP values of the prepared nanoparticles were carefully evaluated as a function of time, magnetic field strength (30, 40, and 50 kA m-1), and the viscosity of the medium (water and glycerol), and compared to commercial magnetic nanoparticle materials under the same conditions. The cytotoxicity of the prepared nanoparticles by in vitro culture with NIH-3T3 fibroblasts exhibited good cytocompatibility up to 0.5 mg/mL. The safety limit of magnetic field parameters for SLP was tested. It did not exceed the 5 × 109 Am-1 s-1 threshold. A saturation temperature of 45 °C could be achieved. These nanoparticles, with minimal metal content, can ideally be used for in vivo hyperthermia applications, such as cancer treatments.

9.
Nanoscale ; 9(30): 10619-10632, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28534925

RESUMO

Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregated amyloid beta (Aß) in the brain. Here, we describe for the first time the development of a new, pioneering nanotechnology-based drug delivery approach for potential therapies for neurodegenerative diseases, particularly AD. We demonstrated the delivery of fluorescent carboxyl magnetic Nile Red particles (FMNPs) to the brains of normal mice using a functionalized magnetic field (FMF) composed of positive- and negative-pulsed magnetic fields generated by electromagnetic coils. The FMNPs successfully reached the brain in a few minutes and showed evidence of blood-brain barrier (BBB) crossing. Moreover, the best FMF conditions were found for inducing the FMNPs to reach the cortex and hippocampus regions. Under the same FMF conditions, dextran-coated Fe3O4 magnetic nanoparticles (MNPs) loaded with osmotin (OMNP) were transported to the brains of Aß1-42-treated mice. Compared with native osmotin, the OMNP potently attenuates Aß1-42-induced synaptic deficits, Aß accumulation, BACE-1 expression and tau hyperphosphorylation. This magnetic drug delivery approach can be extended to preclinical and clinical use and may advance the chances of success in the treatment of neurological disorders like AD in the future.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita , Fármacos Neuroprotetores/administração & dosagem , Proteínas de Plantas/administração & dosagem , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides , Animais , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Fenômenos Eletromagnéticos , Humanos , Camundongos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos , Proteínas de Plantas/farmacologia , Proteínas tau/metabolismo
10.
J Pharmacopuncture ; 17(3): 62-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25780711

RESUMO

OBJECTIVES: The purpose of this study is to report a case series of advanced cancer patients whose cancer pain was relieved by using autonomic nerve pharmacopuncture (ANP) treatment. ANP is a subcutaneous injection therapy of mountain ginseng pharmacopuncture (MGP) along the acupoints on the spine (Hua-Tuo-Jia-Ji-Xue; 0.5 cun lateral to the lower border of the spinous processes of vertebrae) to enhance the immune system and to balance autonomic nerve function. METHODS: Patients with three different types of cancer (gastric cancer, lung cancer, colon cancer with distant metastases) with cancer pain were treated with ANP. 1 mL of MGP was injected into the bilateral Hua-Tuo-Jia-Ji-Xue on the T1-L5 sites (total 12 ─ 20 mL injection) of each patient's dorsum by using the principle of symptom differentiation. During ANP treatment, the visual analogue scale (VAS) for pain was used to assess their levels of cancer pain; also, the dosage and the frequency of analgesic use were measured. RESULTS: The cancer pain levels of all three patients improved with treatment using ANP. The VAS scores of the three patients decreased as the treatment progressed. The dosage and the frequency of analgesics also gradually decreased during the treatment period. Significantly, no related adverse events were found. CONCLUSION: ANP has shown benefit in controlling cancer pain for the three different types of cancer investigated in this study and in reducing the dosage and the frequency of analgesics. ANP is expected to be beneficial for reducing cancer pain and, thus, to be a promising new treatment for cancer pain.

11.
J Biomed Nanotechnol ; 9(7): 1190-4, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23909133

RESUMO

When dealing with nano targeted drug delivery process the significant area of virtual reality application can be visualizing real time process and simulating it at nano-scale, since the effectiveness of a drug primarily depends on the affected cell and targeted doze. This paper proposes virtual reality (VR) as a tool to analyze and simulate nanoparticles (NPs) manipulation, in this paper amorphous NPs are analyzed and simulated in virtual environment. Haptic guides virtualizing the atomic force microscope (AFM) is applied in the virtual environment which allows the operators to sense and touch the NPs when evaluating its structure, drug release time, and behavioral study. Cisplatin was loaded as a modal drug to the self-assembled amorphous copolymer P(3HV-co-4HB)-b-mPEG NPs, where the efficiency and bioavailability of Cisplatin was further investigated. The prepared NPs when simulated in virtual environment proved to show good biocompatibility. Results showed that amorphous polymeric NPs could be efficient vehicles for the constant and targeted delivery of toxic anticancer drugs.


Assuntos
Quimioterapia Assistida por Computador/métodos , Micromanipulação/métodos , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Tato , Interface Usuário-Computador
12.
J Craniofac Surg ; 20(3): 951-2, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19461339

RESUMO

Pleomorphic adenoma (PA) is a rare tumor of the skin that may arise from either the apocrine or the eccrine glands. Only 4 cases of PA in the auricle have been reported. We experienced the case of a 40-year-old woman who had a slowly growing, nontender auricle mass for 3 years. Under a clinical diagnosis of an epidermal inclusion cyst, we performed a total excision of the tumor with the skin and with direct closure. No recurrence was found during the 18 months of postoperative follow-up. Histologic examination confirmed a diagnosis of PA. Hematoxylin-eosin stain showed tubules that were lined with 2 layers of epithelial cells. The stroma was composed of the myxoid and chondroid matrices. Immunohistochemical staining was positive for cytokeratin, epithelial membrane antigen, and gross cystic disease fluid protein, whereas it was negative for S-100 and carcinoembryonic antigen. These findings suggested that this tumor originated from the apocrine glands. Only a few cases of PA in the auricle have been reported in the literature, 2 of which occurred in the helical rim. Recurrence is rare if there is complete resection of the tumor along with the surrounding capsule. We report herein a rare case of PA that developed in the auricle.


Assuntos
Adenoma Pleomorfo/diagnóstico , Pavilhão Auricular/patologia , Neoplasias da Orelha/diagnóstico , Adulto , Biomarcadores Tumorais/análise , Proteínas de Transporte/análise , Líquido Cístico/química , Diagnóstico Diferencial , Otopatias/diagnóstico , Cisto Epidérmico/diagnóstico , Células Epiteliais/patologia , Feminino , Seguimentos , Glicoproteínas/análise , Humanos , Queratinas/análise , Proteínas de Membrana Transportadoras , Mucina-1/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA