Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 12(11): e12369, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37908159

RESUMO

The molecular heterogeneity of extracellular vesicles (EVs) and the co-isolation of physically similar particles, such as lipoproteins (LPs), confounds and limits the sensitivity of EV bulk biomarker characterization. Herein, we present a single-EV and particle (siEVP) protein and RNA assay (siEVP PRA) to simultaneously detect mRNAs, miRNAs, and proteins in subpopulations of EVs and LPs. The siEVP PRA immobilizes and sorts particles via positive immunoselection onto micropatterns and focuses biomolecular signals in situ. By detecting EVPs at a single-particle resolution, the siEVP PRA outperformed the sensitivities of bulk-analysis benchmark assays for RNA and protein. To assess the specificity of RNA detection in complex biofluids, EVs from various glioma cell lines were processed with small RNA sequencing, whereby two mRNAs and two miRNAs associated with glioblastoma multiforme (GBM) were chosen for cross-validation. Despite the presence of single-EV-LP co-isolates in serum, the siEVP PRA detected GBM-associated vesicular RNA profiles in GBM patient siEVPs. The siEVP PRA effectively examines intravesicular, intervesicular, and interparticle heterogeneity with diagnostic promise.


Assuntos
Vesículas Extracelulares , Glioblastoma , MicroRNAs , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Lipoproteínas , Glioblastoma/diagnóstico , Glioblastoma/genética
2.
J Extracell Vesicles ; 11(9): e12258, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36093740

RESUMO

Conventional PD-L1 immunohistochemical tissue biopsies only predict 20%-40% of non-small cell lung cancer (NSCLC) patients that will respond positively to anti-PD-1/PD-L1 immunotherapy. Herein, we present an immunogold biochip to quantify single extracellular vesicular RNA and protein (Au SERP) as a non-invasive alternative. With only 20 µl of purified serum, PD-1/PD-L1 proteins on the surface of extracellular vesicles (EVs) and EV PD-1/PD-L1 messenger RNA (mRNA) cargo were detected at a single-vesicle resolution and exceeded the sensitivities of their bulk-analysis conventional counterparts, ELISA and qRT-PCR, by 1000 times. By testing a cohort of 27 non-responding and 27 responding NSCLC patients, Au SERP indicated that the single-EV mRNA biomarkers surpass the single-EV protein biomarkers in predicting patient responses to immunotherapy. Dual single-EV PD-1/PD-L1 mRNA detection differentiated responders from non-responders with an accuracy of 72.2% and achieved an NSCLC diagnosis accuracy of 93.2%, suggesting the potential for Au SERP to provide enhanced immunotherapy predictions and cancer diagnoses within the clinical setting.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Antígeno B7-H1/genética , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/genética , Vesículas Extracelulares/metabolismo , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/genética , RNA/uso terapêutico , RNA Mensageiro/metabolismo
3.
Lab Chip ; 22(13): 2502-2518, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35579189

RESUMO

Investigating cellular and vesicular heterogeneity in breast cancer remains a challenge, which encourages the development of controllable in vitro systems that mimic the tumor microenvironment. Although three-dimensional cell culture better recapitulates the heterogeneity observed in tumor growth and extracellular vesicle (EV) biogenesis, the physiological relevance is often contrasted with the control offered by two-dimensional cell culture. Therefore, to challenge this misconception we developed a novel microfluidic system harboring highly tunable three-dimensional EV microbioreactors (EVµBRs) to model micrometastatic EV release in breast cancer while capitalizing on the convenient, low-volume, and sterile interface provided by microfluidics. The diameter and cellular occupancy of the EVµBRs could be precisely tailored to various configurations, supporting the formation of breast cancer tumor spheroids. To immobilize the EVµBRs within a microchannel and facilitate EV extraction, oxygen inhibition in free-radical polymerization was repurposed to rapidly generate two-layer hydrodynamic traps in situ using a digital-micromirror device (DMD)-based ultraviolet (UV) projection system. Breast cancer tumor spheroid-derived EVs were harvested with as little as 20 µL from the microfluidic system and quantified by single-EV immunofluorescence for CD63 and CD81. Despite the low-volume extraction, differences in biomarker expression and coexpression of the tetraspanins on single EVs were observed. Furthermore, the EVµBRs were capable of recapitulating heterogeneity at a cellular and vesicular degree, indicating the utility and robustness of the microfluidic system to investigate physiologically relevant EVs in breast cancer and other disease models.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Microgéis , Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Microfluídica , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA