Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565291

RESUMO

Microglia undergo two-stage activation in neurodegenerative diseases, known as disease-associated microglia (DAM). TREM2 mediates the DAM2 stage transition, but what regulates the first DAM1 stage transition is unknown. We report that glucose dyshomeostasis inhibits DAM1 activation and PKM2 plays a role. As in tumors, PKM2 was aberrantly elevated in both male and female human AD brains, but unlike in tumors, it is expressed as active tetramers, as well as among TREM2+ microglia surrounding plaques in 5XFAD male and female mice. snRNAseq analyses of microglia without Pkm2 in 5XFAD mice revealed significant increases in DAM1 markers in a distinct metabolic cluster, which is enriched in genes for glucose metabolism, DAM1, and AD risk. 5XFAD mice incidentally exhibited a significant reduction in amyloid pathology without microglial Pkm2 Surprisingly, microglia in 5XFAD without Pkm2 exhibited increases in glycolysis and spare respiratory capacity, which correlated with restoration of mitochondrial cristae alterations. In addition, in situ spatial metabolomics of plaque-bearing microglia revealed an increase in respiratory activity. These results together suggest that it is not only glycolytic but also respiratory inputs that are critical to the development of DAM signatures in 5XFAD mice.


Assuntos
Glucose , Homeostase , Camundongos Transgênicos , Microglia , Animais , Microglia/metabolismo , Microglia/patologia , Camundongos , Homeostase/fisiologia , Glucose/metabolismo , Masculino , Feminino , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicólise/fisiologia , Proteínas de Ligação a Hormônio da Tireoide
2.
J Neurosci ; 41(42): 8710-8724, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34507952

RESUMO

We report that the neurotrophin receptor p75 contributes to sensory neuron survival through the regulation of cholesterol metabolism in Schwann cells. Selective deletion of p75 in mouse Schwann cells of either sex resulted in a 30% loss of dorsal root ganglia (DRG) neurons and diminished thermal sensitivity. P75 regulates Schwann cell cholesterol biosynthesis in response to BDNF, forming a co-receptor complex with ErbB2 and activating ErbB2-mediated stimulation of sterol regulatory element binding protein 2 (SREBP2), a master regulator of cholesterol synthesis. Schwann cells lacking p75 exhibited decreased activation of SREBP2 and a reduction in 7-dehydrocholesterol (7-DHC) reductase (DHCR7) expression, resulting in accumulation of the neurotoxic intermediate, 7-dehyrocholesterol in the sciatic nerve. Restoration of DHCR7 in p75 null Schwann cells in mice significantly attenuated DRG neuron loss. Together, these results reveal a mechanism by which the disruption of lipid metabolism in glial cells negatively influences sensory neuron survival, which has implications for a wide range of peripheral neuropathies.SIGNIFICANCE STATEMENT Although expressed in Schwann cells, the role of p75 in myelination has remained unresolved in part because of its dual expression in sensory neurons that Schwann cells myelinate. When p75 was deleted selectively among Schwann cells, myelination was minimally affected, while sensory neuron survival was reduced by 30%. The phenotype is mainly due to dysregulation of cholesterol biosynthesis in p75-deficient Schwann cells, leading to an accumulation of neurotoxic cholesterol precursor, 7-dehydrocholesterol (7-DHC). Mechanism-wise, we discovered that in response to BDNF, p75 recruits and activates ErbB2 independently of ErbB3, thereby stimulating the master regulator, sterol regulatory element binding protein 2 (SREBP2). These results together highlight a novel role of p75 in Schwann cells in regulating DRG neuron survival by orchestrating proper cholesterol metabolism.


Assuntos
Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Células de Schwann/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura
3.
Dev Biol ; 462(1): 36-49, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113830

RESUMO

Embryonic morphogenesis relies on the intrinsic ability of cells, often through remodeling the cytoskeleton, to shape epithelial tissues during development. Epithelial invagination is an example of morphogenesis that depends on this remodeling but the cellular mechanisms driving arrangement of cytoskeletal elements needed for tissue deformation remain incompletely characterized. To elucidate these mechanisms, live fluorescent microscopy and immunohistochemistry on fixed specimens were performed on chick and mouse lens placodes. This analysis revealed the formation of peripherally localized, circumferentially orientated and aligned junctions enriched in F-actin and MyoIIB. Once formed, the aligned junctions contract in a Rho-kinase and non-muscle myosin dependent manner. Further molecular characterization of these junctions revealed a Rho-kinase dependent accumulation of Arhgef11, a RhoA-specific guanine exchange factor known to regulate the formation of actomyosin cables and junctional contraction. In contrast, the localization of the Par-complex protein Par3, was reduced in these circumferentially orientated junctions. In an effort to determine if Par3 plays a negative role in MyoIIB accumulation, Par3-deficient mouse embryos were analyzed which not only revealed an increase in bicellular junctional accumulation of MyoIIB, but also a reduction of Arhgef11. Together, these results highlight the importance of the formation of the multicellular actomyosin cables that appear essential to the initiation of epithelial invagination and implicate the potential role of Arhgef11 and Par3 in their contraction and formation.


Assuntos
Actomiosina/metabolismo , Cristalino/embriologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Embrião de Galinha , Citoesqueleto/metabolismo , Desenvolvimento Embrionário , Células Epiteliais/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Camundongos Knockout , Morfogênese , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Quinases Associadas a rho/metabolismo
4.
Nat Commun ; 6: 6576, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25807892

RESUMO

Angiogenesis produces primitive vascular networks that need pruning to yield hierarchically organized and functional vessels. Despite the critical importance of vessel pruning to vessel patterning and function, the mechanisms regulating this process are not clear. Here we show that EphrinB2, a well-known player in angiogenesis, is an essential regulator of endothelial cell death and vessel pruning. This regulation depends upon phosphotyrosine-EphrinB2 signalling repressing c-jun N-terminal kinase 3 activity via STAT1. JNK3 activation causes endothelial cell death. In the absence of JNK3, hyaloid vessel physiological pruning is impaired, associated with abnormal persistence of hyaloid vessels, defective retinal vasculature and microphthalmia. This syndrome closely resembles human persistent hyperplastic primary vitreus (PHPV), attributed to failed involution of hyaloid vessels. Our results provide evidence that EphrinB2/STAT1/JNK3 signalling is essential for vessel pruning, and that defects in this pathway may contribute to PHPV.


Assuntos
Células Endoteliais/metabolismo , Efrina-B2/genética , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Neovascularização Fisiológica/genética , Vasos Retinianos/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Imunoprecipitação da Cromatina , Citometria de Fluxo , Imunofluorescência , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Immunoblotting , Imunoprecipitação , Técnicas In Vitro , Camundongos , Camundongos Knockout , Neovascularização Patológica/genética , Vítreo Primário Hiperplásico Persistente/genética , Transdução de Sinais
5.
Neuro Oncol ; 16(10): 1354-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24879047

RESUMO

BACKGROUNDS: Piperlongumine, a natural plant product, kills multiple cancer types with little effect on normal cells. Piperlongumine raises intracellular levels of reactive oxygen species (ROS), a phenomenon that may underlie the cancer-cell killing. Although these findings suggest that piperlongumine could be useful for treating cancers, the mechanism by which the drug selectively kills cancer cells remains unknown. METHODS: We treated multiple high-grade glioma (HGG) sphere cultures with piperlongumine and assessed its effects on ROS and cell-growth levels as well as changes in downstream signaling. We also examined the levels of putative piperlongumine targets and their roles in HGG cell growth. RESULTS: Piperlongumine treatment increased ROS levels and preferentially killed HGG cells with little effect in normal brain cells. Piperlongumine reportedly increases ROS levels after interactions with several redox regulators. We found that HGG cells expressed higher levels of the putative piperlongumine targets than did normal neural stem cells (NSCs). Furthermore, piperlongumine treatment in HGG cells, but not in normal NSCs, increased oxidative inactivation of peroxiredoxin 4 (PRDX4), an ROS-reducing enzyme that is overexpressed in HGGs and facilitates proper protein folding in the endoplasmic reticulum (ER). Moreover, piperlongumine exacerbated intracellular ER stress, an effect that was mimicked by suppressing PRDX4 expression. CONCLUSIONS: Our results reveal that the mechanism by which piperlongumine preferentially kills HGG cells involves PRDX4 inactivation, thereby inducing ER stress. Therefore, piperlongumine treatment could be considered as a novel therapeutic option for HGG treatment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Dioxolanos/administração & dosagem , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioma/tratamento farmacológico , Peroxirredoxinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Bases de Dados Factuais , Glioma/metabolismo , Glioma/mortalidade , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Análise de Sobrevida , Células Tumorais Cultivadas
6.
PLoS One ; 7(8): e42818, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916164

RESUMO

Glioblastoma multiforme (GBM), the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4) is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future.


Assuntos
Apoptose , Divisão Celular , Glioblastoma/patologia , Peroxirredoxinas/metabolismo , Animais , Dano ao DNA , Modelos Animais de Doenças , Glioblastoma/metabolismo , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
7.
Nat Neurosci ; 14(4): 437-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21423191

RESUMO

Schwann cell myelination is tightly regulated by timely expression of key transcriptional regulators that respond to specific environmental cues, but the molecular mechanisms underlying such a process are poorly understood. We found that the acetylation state of NF-κB, which is regulated by histone deacetylases (HDACs) 1 and 2, is critical for orchestrating the myelination program. Mice lacking both HDACs 1 and 2 (HDAC1/2) exhibited severe myelin deficiency with Schwann cell development arrested at the immature stage. NF-κB p65 became heavily acetylated in HDAC1/2 mutants, inhibiting the expression of positive regulators of myelination and inducing the expression of differentiation inhibitors. We observed that the NF-κB protein complex switched from associating with p300 to associating with HDAC1/2 as Schwann cells differentiated. NF-κB and HDAC1/2 acted in a coordinated fashion to regulate the transcriptionally linked chromatin state for Schwann cell myelination. Thus, our results reveal an HDAC-mediated developmental switch for controlling myelination in the peripheral nervous system.


Assuntos
Histona Desacetilase 1/fisiologia , Histona Desacetilase 2/fisiologia , NF-kappa B/metabolismo , Fibras Nervosas Mielinizadas/enzimologia , Células de Schwann/enzimologia , Nervo Isquiático/crescimento & desenvolvimento , Acetilação , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Células Cultivadas , Cromatina/genética , Proteína p300 Associada a E1A/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Camundongos , Camundongos Knockout , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/ultraestrutura , Ratos , Células de Schwann/patologia , Células de Schwann/ultraestrutura , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Fator de Transcrição RelA/metabolismo , Ativação Transcricional/fisiologia
8.
J Biol Chem ; 285(26): 20358-68, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20421303

RESUMO

During the development of the sympathetic nervous system, the p75 neurotrophin receptor (p75NTR) has a dual function: promoting survival together with TrkA in response to NGF, but inducing cell death upon binding pro or mature brain-derived neurotrophic factor (BDNF). Apoptotic signaling through p75NTR requires activation of the stress kinase, JNK. However, the receptor also undergoes regulated proteolysis, first by a metalloprotease, and then by gamma-secretase, in response to pro-apoptotic ligands and this is necessary for receptor mediated neuronal death (Kenchappa, R. S., Zampieri, N., Chao, M. V., Barker, P. A., Teng, H. K., Hempstead, B. L., and Carter, B. D. (2006) Neuron 50, 219-232). Hence, the relationship between JNK activation and receptor proteolysis remains to be defined. Here, we report that JNK3 activation is necessary for p75NTR cleavage; however, following release of the intracellular domain, there is a secondary activation of JNK3 that is cleavage dependent. Receptor proteolysis and apoptosis were prevented in sympathetic neurons from jnk3(-/-) mice, while activation of JNK by ectopic expression of MEKK1 induced p75NTR cleavage and cell death. Proteolysis of the receptor was not detected until 6 h after BDNF treatment, suggesting that JNK3 promotes cleavage through a transcriptional mechanism. In support of this hypothesis, BDNF up-regulated tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM17 mRNA and protein in wild-type, but not jnk3(-/-) sympathetic neurons. Down-regulation of TACE by RNA interference blocked BDNF-induced p75NTR cleavage and apoptosis, indicating that this metalloprotease is responsible for the initial processing of the receptor. Together, these results demonstrate that p75NTR-mediated activation of JNK3 is required for up-regulation of TACE, which promotes receptor proteolysis, leading to prolonged activation of JNK3 and subsequent apoptosis in sympathetic neurons.


Assuntos
Proteínas ADAM/metabolismo , Apoptose , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Proteínas ADAM/genética , Proteína ADAM17 , Animais , Antracenos/farmacologia , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Linhagem Celular , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Humanos , Cinética , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 10 Ativada por Mitógeno/genética , Fator de Crescimento Neural/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores de Fator de Crescimento Neural/genética , Gânglio Cervical Superior/citologia , Regulação para Cima
9.
Neoplasia ; 10(11): 1213-21, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18953430

RESUMO

Signaling events leading to Schwann cell tumor initiation have been extensively characterized in the context of neurofibromatosis (NF). Similar tumors are also observed in patients with the endocrine neoplasia syndrome Carney complex, which results from inactivating mutations in PRKAR1A. Loss of PRKAR1A causes enhanced protein kinase A activity, although the pathways leading to tumorigenesis are not well characterized. Tissue-specific ablation of Prkar1a in neural crest precursor cells (TEC3KO mice) causes schwannomas with nearly 80% penetrance by 10 months. These heterogeneous neoplasms were clinically characterized as genetically engineered mouse schwannomas, grades II and III. At the molecular level, analysis of the tumors revealed almost complete loss of both NF proteins, despite the fact that transcript levels were increased, implying posttranscriptional regulation. Although Erk and Akt signaling are typically enhanced in NF-associated tumors, we observed no activation of either of these pathways in TEC3KO tumors. Furthermore, the small G proteins Ras, Rac1, and RhoA are all known to be involved with NF signaling. In TEC3KO tumors, all three molecules showed modest increases in total protein, but only Rac1 showed significant activation. These data suggest that dysregulated protein kinase A activation causes tumorigenesis through pathways that overlap but are distinct from those described in NF tumorigenesis.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Neurilemoma/metabolismo , Neurofibromina 1/metabolismo , Neurofibromina 2/metabolismo , Animais , Western Blotting , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Genes da Neurofibromatose 1 , Genes da Neurofibromatose 2 , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neurilemoma/genética , Reação em Cadeia da Polimerase , Células de Schwann/metabolismo , Transdução de Sinais
10.
Circ Res ; 103(2): e15-26, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18566344

RESUMO

Diabetes impairs endothelial function and reparative neovascularization. The p75 receptor of neurotrophins (p75(NTR)), which is scarcely present in healthy endothelial cells (ECs), becomes strongly expressed by capillary ECs after induction of peripheral ischemia in type-1 diabetic mice. Here, we show that gene transfer-induced p75(NTR) expression impairs the survival, proliferation, migration, and adhesion capacities of cultured ECs and endothelial progenitor cells (EPCs) and inhibits angiogenesis in vitro. Moreover, intramuscular p75(NTR) gene delivery impairs neovascularization and blood flow recovery in a mouse model of limb ischemia. These disturbed functions are associated with suppression of signaling mechanisms implicated in EC survival and angiogenesis. In fact, p75(NTR) depresses the VEGF-A/Akt/eNOS/NO pathway and additionally reduces the mRNA levels of ITGB1 [beta (1) integrin], BIRC5 (survivin), PTTG1 (securin) and VEZF1. Diabetic mice, which typically show impaired postischemic muscular neovascularization and blood perfusion recovery, have these defects corrected by intramuscular gene transfer of a dominant negative mutant form of p75(NTR). Collectively, our data newly demonstrate the antiangiogenic action of p75(NTR) and open new avenues for the therapeutic use of p75(NTR) inhibition to combat diabetes-induced microvascular liabilities.


Assuntos
Apoptose/fisiologia , Angiopatias Diabéticas/metabolismo , Endotélio Vascular/fisiologia , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Receptor de Fator de Crescimento Neural/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Endotélio Vascular/patologia , Humanos , Isquemia/etiologia , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Fator de Crescimento Neural/genética , Transdução de Sinais/fisiologia , Estreptozocina , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
J Neurosci ; 27(31): 8395-404, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17670986

RESUMO

Although oligodendrocytes undergo apoptosis after spinal cord injury, molecular mechanisms responsible for their death have been unknown. We report that oligodendrocyte apoptosis is regulated oppositely by c-Jun N-terminal kinase 3 (JNK3) and protein interacting with the mitotic kinase, never in mitosis A I (Pin1), the actions of which converge on myeloid cell leukemia sequence-1 (Mcl-1). Activated after injury, JNK3 induces cytochrome c release by facilitating the degradation of Mcl-1, the stability of which is maintained in part by Pin1. Pin1 binds Mcl-1 at its constitutively phosphorylated site, Thr163Pro, and stabilizes it by inhibiting ubiquitination. After injury JNK3 phosphorylates Mcl-1 at Ser121Pro, facilitating the dissociation of Pin1 from Mcl-1. JNK3 thus induces Mcl-1 degradation by counteracting the protective binding of Pin1. These results are confirmed by the opposing phenotypes observed between JNK3-/- and Pin1-/- mice: oligodendrocyte apoptosis and cytochrome c release are reduced in JNK3-/- but elevated in Pin1-/- mice. This report thus unveils a mechanism by which cytochrome c release is under the opposite control of JNK3 and Pin1, regulators for which the activities are intricately coupled.


Assuntos
Apoptose/fisiologia , Proteína Quinase 10 Ativada por Mitógeno/fisiologia , Oligodendroglia/enzimologia , Peptidilprolil Isomerase/fisiologia , Traumatismos da Medula Espinal/enzimologia , Animais , Apoptose/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Quinase 10 Ativada por Mitógeno/deficiência , Proteína Quinase 10 Ativada por Mitógeno/genética , Peptidilprolil Isomerase de Interação com NIMA , Oligodendroglia/citologia , Oligodendroglia/patologia , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Ubiquitina/antagonistas & inibidores , Ubiquitina/metabolismo
12.
J Biol Chem ; 282(14): 10506-15, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17284443

RESUMO

Cyclic AMP regulates multiple neuronal functions, including neurite outgrowth and axonal regeneration. GPR3, GPR6, and GPR12 make up a family of constitutively active G protein-coupled receptors (GPCRs) that share greater than 50% identity and 65% similarity at the amino acid level. They are highly expressed in the central nervous system, and their expression in various cell lines results in constitutive stimulation of cAMP production. When the constitutively active GPCRs were overexpressed in rat cerebellar granule neurons in culture, the transfected neurons exhibited significantly enhanced neurite outgrowth and overcame growth inhibition caused by myelin-associated glycoprotein. GPR12-mediated neurite outgrowth was the most prominent and was shown to depend on G(s) and cAMP-dependent protein kinase. Moreover, the GPR12-mediated rescue from myelin-associated glycoprotein inhibition was attributable to cAMP-dependent protein kinase-mediated inhibition of the small GTPase, RhoA. Among the three receptors, GPR3 was revealed to be enriched in the developing rat cerebellar granule neurons. When the endogenous GPR3 was knocked down, significant reduction of neurite growth was observed, which was reversed by expression of either GPR3 or GPR12. Taken together, our results indicate that expression of the constitutively active GPCRs up-regulates cAMP production in neurons, stimulates neurite outgrowth, and counteracts myelin inhibition. Further characterization of the GPCRs in developing and injured mammalian neurons should provide insights into how basal cAMP levels are regulated in neurons and could establish a firm scientific foundation for applying receptor biology to treatment of various neurological disorders.


Assuntos
Cerebelo/metabolismo , AMP Cíclico/biossíntese , Neuritos/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Regulação para Cima , Animais , Linhagem Celular , Cerebelo/citologia , Deleção de Genes , Humanos , Bainha de Mielina/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Transfecção , Proteína rhoA de Ligação ao GTP/metabolismo
13.
J Neurosci ; 26(20): 5288-300, 2006 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-16707781

RESUMO

Studies showing that neurotrophin binding to p75NTR can promote cell survival in the absence of Trk (tropomyosin-related kinase) receptors, together with recent structural data indicating that NGF may bind to p75NTR in a monovalent manner, raise the possibility that small molecule p75NTR ligands that positively regulate survival might be found. A pharmacophore designed to capture selected structural and physical chemical features of a neurotrophin domain known to interact with p75NTR was applied to in silico screening of small molecule libraries. Small, nonpeptide, monomeric compounds were identified that interact with p75NTR. In cells showing trophic responses to neurotrophins, the compounds promoted survival signaling through p75NTR-dependent mechanisms. In cells susceptible to proneurotrophin-induced death, compounds did not induce apoptosis but inhibited proneurotrophin-mediated death. These studies identify a unique range of p75NTR behaviors that can result from isolated receptor liganding and establish several novel therapeutic leads.


Assuntos
Apoptose/efeitos dos fármacos , Fator de Crescimento Neural/antagonistas & inibidores , Fatores de Crescimento Neural/farmacologia , Fármacos Neuroprotetores/farmacologia , Precursores de Proteínas/antagonistas & inibidores , Receptor de Fator de Crescimento Neural/agonistas , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Isoleucina/análogos & derivados , Isoleucina/farmacologia , Ligantes , Camundongos , Estrutura Molecular , Peso Molecular , Morfolinas/farmacologia , Células NIH 3T3 , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/síntese química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/síntese química , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Células PC12 , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína/fisiologia , Ratos , Receptor de Fator de Crescimento Neural/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
14.
J Biol Chem ; 280(14): 13801-8, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15668238

RESUMO

Activation of the p75 neurotrophin receptor leads to a variety of effects within the nervous system, including neuronal apoptosis. Both c-Jun N-terminal kinase (JNK) and the tumor suppressor p53 have been reported to be critical for this receptor to induce cell death; however, the mechanisms by which p75 activates these pathways is undetermined. Here we report that the neurotrophin receptor interacting factor (NRIF) is necessary for p75-dependent JNK activation and apoptosis. Upon nerve growth factor withdrawal, nrif-/- sympathetic neurons underwent apoptosis, whereas p75-mediated death was completely abrogated. The lack of cell death correlated with a lack of JNK activation in the nrif-/- neurons, suggesting that NRIF is a selective mediator for p75-dependent JNK activation and apoptosis. Moreover, we document that NRIF expression is sufficient to induce cell death through a mechanism that requires p53. Taken together, these results establish NRIF as an essential component of the p75 apoptotic pathway.


Assuntos
Apoptose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais/fisiologia , Fibras Adrenérgicas/metabolismo , Animais , Caspases/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Knockout , Fator de Crescimento Neural/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Ratos , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Mol Cell Biol ; 25(2): 751-66, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15632075

RESUMO

To elucidate the role of epigenetic reprogramming in cell- or tissue-specific differentiation, we explored the role of DNA methyltransferases (Dnmts) in the nerve growth factor (NGF)-induced differentiation of PC12 (pheochromocytoma) cells into neuronal cells. The mRNA and protein levels of de novo methyltransferase Dnmt3b increased, whereas those of Dnmt3a and Dnmt1 decreased, during NGF-induced neurite outgrowth. Dnmt3b localized in the nucleus, as well as in the growing neurites. When the expression of Dnmt3b was inhibited by antisense or small interfering RNA, PC12 cells continued to proliferate and failed to generate neurites. Cells depleted of Dnmt3b were unable to exit the cell cycle even after 6 days of NGF treatment. Furthermore, this failure in differentiation correlated with significant attenuation in tyrosine phosphorylation of TrkA (a marker for NGF-induced differentiation) and reduced the expression of neuronal markers, Hu antigen, and MAP2. The methyl-CpG content of the PC12 genome or the methylation status of repetitive elements was not significantly altered after differentiation and was not affected by Dnmt3b depletion. This was consistent with the ability of the catalytic-site mutant of Dnmt3b to induce differentiation in Dnmt3b-depleted cells after NGF treatment. The Dnmt3b-mediated differentiation was attributed to its N-terminal domain, which recruits histone deacetylase 2 (Hdac2), as demonstrated by (i) impeding of differentiation by the Hdac inhibitors, (ii) facilitation of the differentiation process by overexpression of the N-terminal domain of Dnmt3b, (iii) higher Hdac activity associated with Dnmt3b after NGF treatment, and (iv) coimmunoprecipitation and cosedimentation of Dnmt3b specifically with Hdac2 in a glycerol density gradient. These data indicate a novel role of Dnmt3b in neuronal differentiation.


Assuntos
Diferenciação Celular/fisiologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Histona Desacetilases/metabolismo , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Proteínas Repressoras/metabolismo , Animais , Biomarcadores , Ciclo Celular/fisiologia , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas ELAV , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilase 2 , Histona Desacetilases/genética , Metilação , Proteínas Associadas aos Microtúbulos/metabolismo , Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Células PC12 , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo , Ratos , Receptor trkA/metabolismo , Proteínas Repressoras/genética , DNA Metiltransferase 3B
16.
J Neurosci ; 23(13): 5561-71, 2003 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-12843257

RESUMO

The knock-out analyses of neuregulin and its receptors have indicated that they play essential roles in Schwann cell development. However, the role they play in oligodendrocyte development in vivo has remained unclear, because such knock-out animals die before CNS myelination begins. We examined the role of neuregulin signaling in the CNS by generating transgenic mice that express a dominant-negative mutant of the ErbB2 receptor among oligodendrocytes, using an MBP promoter. The transgenic mice exhibited widespread hypomyelination, resulting from a reduction in oligodendrocyte differentiation. The number of progenitors was conversely increased in the transgenic mice. We report that a reduction in oligodendrocyte differentiation is attributed in part to apoptosis of oligodendrocyte progenitors as they exit the cell cycle. A significant reduction in the number of p27+ oligodendrocyte precursors in the transgenic mice supports this conclusion. Taken together, these data suggest that for oligodendrocyte progenitors, ErbB2 signaling plays a role in governing a properly timed exit from the cell cycle during development into myelinating oligodendrocytes.


Assuntos
Diferenciação Celular/fisiologia , Oligodendroglia/fisiologia , Receptor ErbB-2/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Genes Dominantes , Camundongos , Camundongos Transgênicos , Mutação , Proteína Básica da Mielina/genética , Bainha de Mielina/metabolismo , Neurregulinas/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas , Receptor ErbB-2/genética , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia
17.
J Neurochem ; 84(2): 347-62, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12558997

RESUMO

One hallmark of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, aggregated paired helical filaments composed of hyperphosphorylated tau. Amyloid-beta (Abeta) induces tau hyperphosphorylation, decreases microtubule (MT) stability and induces neuronal death. MT stabilizing agents have been proposed as potential therapeutics that may minimize Abeta toxicity and here we report that paclitaxel (taxol) prevents cell death induced by Abeta peptides, inhibits Abeta-induced activation of cyclin-dependent kinase 5 (cdk5) and decreases tau hyperphosphorylation. Taxol did not inhibit cdk5 directly but significantly blocked Abeta-induced calpain activation and decreased formation of the cdk5 activator, p25, from p35. Taxol specifically inhibited the Abeta-induced activation of the cytosolic cdk5-p25 complex, but not the membrane-associated cdk5-p35 complex. MT-stabilization was necessary for neuroprotection and inhibition of cdk5 but was not sufficient to prevent cell death induced by overexpression of p25. As taxol is not permeable to the blood-brain barrier, we assessed the potential of taxanes to attenuate Abeta toxicity in adult animals using a succinylated taxol analog (TX67) permeable to the blood-brain barrier. TX67, but not taxol, attenuated the magnitude of both basal and Abeta-induced cdk5 activation in acutely dissociated cortical cultures prepared from drug treated adult mice. These results suggest that MT-stabilizing agents may provide a therapeutic approach to decrease Abeta toxicity and neurofibrillary pathology in AD and other tauopathies.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Antineoplásicos Fitogênicos/farmacologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Paclitaxel/farmacologia , Animais , Barreira Hematoencefálica/fisiologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Quinase 5 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Ativação Enzimática/efeitos dos fármacos , Substâncias Macromoleculares , Camundongos , Camundongos Transgênicos , Microtúbulos/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Paclitaxel/análogos & derivados , Fragmentos de Peptídeos/toxicidade , Fosforilação/efeitos dos fármacos , Subunidades Proteicas/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas tau/metabolismo
18.
J Neurosci ; 22(1): 156-66, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11756498

RESUMO

The neurotrophin receptor p75 can induce apoptosis both in vitro and in vivo. The mechanisms by which p75 induces apoptosis have remained mostly unknown. Here, we report that p75 activates Rac GTPase, which in turn activates c-jun N-terminal kinase (JNK), including an injury-specific JNK3, in an NGF-dependent manner. N17Rac blocks this JNK activation and subsequent NGF-dependent apoptosis, indicating that activation of Rac GTPase is required for JNK activation and apoptosis induced by p75. In addition, p75-mediated Rac activation is modulated by coactivation of Trk, identifying Rac GTPase as one of the key molecules whose activity is critical for cell survival and death in neurotrophin signaling. The crucial role of the JNK pathway in p75 signaling is further confirmed by the results that blocking p75 from signaling via the JNK pathway or suppressing the JNK activity itself led to inhibition of NGF-dependent death. Together, these results indicate that the apoptotic machinery of p75 comprises Rac GTPase and JNK.


Assuntos
Apoptose/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oligodendroglia/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Adenoviridae/genética , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/fisiologia , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Vetores Genéticos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Camundongos Knockout , Proteína Quinase 10 Ativada por Mitógeno , Proteína Quinase 8 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/genética , Fator de Crescimento Neural/farmacologia , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Ratos , Receptor de Fator de Crescimento Neural/deficiência , Receptor de Fator de Crescimento Neural/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transfecção , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
J Neurobiol ; 50(1): 56-68, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11748633

RESUMO

Tagged G-protein-coupled receptors (GPCRs) have been used to facilitate intracellular visualization of these receptors. We have used a combination of adenoviral vector gene transfer and tagged olfactory receptors to help visualize mammalian olfactory receptor proteins in the normal olfactory epithelium of rats, and in cell culture. Three recombinant adenoviral vectors were generated carrying variously tagged versions of rat olfactory receptor I7. The constructs include an N-terminal Flag epitope tag (Flag:I7), enhanced green fluorescent protein (EGFP) fusion protein (EGFP:I7), and a C-terminal EGFP fusion (I7:EGFP). These receptor constructs were assayed in rat olfactory sensory neurons (OSNs) and in a heterologous system (HEK 293 cell line) for protein localization and functional expression. Functional expression of the tagged receptor proteins was tested by electroolfactogram (EOG) recordings in the infected rat olfactory epithelium, and by calcium imaging in single cells. Our results demonstrate that the I7:EGFP fusion protein and Flag:I7 are functionally expressed in OSNs while the EGFP:I7 fusion is not, probably due to inappropriate processing of the protein in the cells. These data suggest that a small epitope tag (Flag) at the N-terminus, or EGFP located at the C-terminus of the receptor, does not affect ligand binding or downstream signaling. In addition, both functional fusion proteins (Flag:I7 and I7:EGFP) are properly targeted to the plasma membrane of HEK 293 cells.


Assuntos
Neurônios/fisiologia , Mucosa Olfatória/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Receptores de Superfície Celular/fisiologia , Infecções por Adenoviridae/fisiopatologia , Animais , Sinalização do Cálcio/fisiologia , Linhagem Celular , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Eletroculografia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/genética , Ratos , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA