Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 72(9): 826-830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39313387

RESUMO

Surugamides are a group of non-ribosomal peptides produced by Streptomyces spp. Several derivatives possess acyl groups, which are proposed to be attached to a lysine side chain after backbone-macrocyclization during biosynthesis. To date, five different acyl groups have been identified in nature, yet their impacts on biological activity remain underexplored. Here we synthesized surugamide B derivatives with varied acyl moieties. Biological evaluations revealed that larger hydrophobic acyl groups on lysine ε-NH2 enhance cytotoxicity.


Assuntos
Peptídeos Cíclicos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/farmacologia , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Streptomyces/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral
2.
mSphere ; 9(9): e0033824, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39191389

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant exhibits high transmissibility with a strong immune escape ability and causes frequent large-scale global infections by producing predominant subvariants. Here, using human upper/lower airway and intestinal cells, we examined the previously dominant BA.1-BA.5 and BA.2.75 subvariants, together with the recently emerged XBB/BQ lineages, in comparison to the former Delta variant. We observed a tendency for each virus to demonstrate higher growth capability than the previously dominant subvariants. Unlike human bronchial and intestinal cells, nasal epithelial cells accommodated the efficient entry of certain Omicron subvariants, similar to the Delta variant. In contrast to the Delta's reliance on cell-surface transmembrane protease serine 2, all tested Omicron variants depended on endosomal cathepsin L. Moreover, S1/S2 cleavage of early Omicron spikes was less efficient, whereas recent viruses exhibit improved cleavage efficacy. Our results show that the Omicron variant progressively adapts to human cells through continuous endosome-mediated host cell entry.IMPORTANCESARS-CoV-2, the causative agent of coronavirus disease 2019, has evolved into a number of variants/subvariants, which have generated multiple global waves of infection. In order to monitor/predict virological features of emerging variants and determine appropriate strategies for anti-viral development, understanding conserved or altered features of evolving SARS-CoV-2 is important. In this study, we addressed previously or recently predominant Omicron subvariants and demonstrated the gradual adaptation to human cells. The host cell entry route, which was altered from the former Delta variant, was conserved among all tested Omicron subvariants. Collectively, this study revealed both changing and maintained features of SARS-CoV-2 during the Omicron variant evolution.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Catepsina L/genética , Catepsina L/metabolismo , Linhagem Celular , Células Epiteliais/virologia , Endossomos/virologia , Serina Endopeptidases
3.
Sci Rep ; 11(1): 21259, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711897

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a serious public health concern worldwide. Notably, co-infection with other pathogens may worsen the severity of COVID-19 symptoms and increase fatality. Here, we show that co-infection with influenza A virus (IAV) causes more severe body weight loss and more severe and prolonged pneumonia in SARS-CoV-2-infected hamsters. Each virus can efficiently spread in the lungs without interference by the other. However, in immunohistochemical analyses, SARS-CoV-2 and IAV were not detected at the same sites in the respiratory organs of co-infected hamsters, suggesting that either the two viruses may have different cell tropisms in vivo or each virus may inhibit the infection and/or growth of the other within a cell or adjacent areas in the organs. Furthermore, a significant increase in IL-6 was detected in the sera of hamsters co-infected with SARS-CoV-2 and IAV at 7 and 10 days post-infection, suggesting that IL-6 may be involved in the increased severity of pneumonia. Our results strongly suggest that IAV co-infection with SARS-CoV-2 can have serious health risks and increased caution should be applied in such cases.


Assuntos
COVID-19/complicações , Infecções por Orthomyxoviridae/complicações , Pneumonia Viral/complicações , SARS-CoV-2 , Animais , COVID-19/patologia , COVID-19/virologia , Coinfecção/patologia , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-6/sangue , Pulmão/diagnóstico por imagem , Pulmão/patologia , Mesocricetus , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Replicação Viral
4.
J Gen Virol ; 100(2): 266-277, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30608228

RESUMO

Recently, a large number of Japanese macaques (Macaca fuscata) died of an unknown hemorrhagic syndrome at Kyoto University Primate Research Institute (KUPRI) and an external breeding facility for National Institute for Physiological Sciences (NIPS). We previously reported that the hemorrhagic syndrome of Japanese macaques at KUPRI was caused by infection with simian retrovirus 4 (SRV-4); however, the cause of similar diseases that occurred at the external breeding facility for NIPS was still unknown. In this study, we isolated SRV-5 from Japanese macaques exhibiting thrombocytopenia and then constructed an infectious molecular clone of the SRV-5 isolate. When the SRV-5 isolate was inoculated into two Japanese macaques, severe thrombocytopenia was induced in one of two macaques within 22 days after inoculation. Similarly, the clone-derived virus was inoculated into the other two Japanese macaques, and one of two macaques developed severe thrombocytopenia within 22 days. On the other hand, the remaining two of four macaques survived as asymptomatic carriers even after administering an immunosuppressive agent, dexamethasone. As determined by real-time PCR, SRV-5 infected a variety of tissues in Japanese macaques, especially in digestive and lymph organs. We also identified the SRV-5 receptor as ASCT2, a neutral amino acid transporter in Japanese macaques. Taken together, we conclude that the causative agent of hemorrhagic syndrome occurred at the external breeding facility for NIPS was SRV-5.


Assuntos
Transtornos Hemorrágicos/veterinária , Doenças dos Macacos/patologia , Doenças dos Macacos/virologia , Infecções por Retroviridae/veterinária , Retrovirus dos Símios/crescimento & desenvolvimento , Retrovirus dos Símios/patogenicidade , Trombocitopenia/veterinária , Animais , Transtornos Hemorrágicos/patologia , Transtornos Hemorrágicos/virologia , Macaca , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Retrovirus dos Símios/isolamento & purificação , Trombocitopenia/patologia , Trombocitopenia/virologia
5.
PLoS Pathog ; 13(5): e1006348, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28475648

RESUMO

APOBEC3 (A3) family proteins are DNA cytosine deaminases recognized for contributing to HIV-1 restriction and mutation. Prior studies have demonstrated that A3D, A3F, and A3G enzymes elicit a robust anti-HIV-1 effect in cell cultures and in humanized mouse models. Human A3H is polymorphic and can be categorized into three phenotypes: stable, intermediate, and unstable. However, the anti-viral effect of endogenous A3H in vivo has yet to be examined. Here we utilize a hematopoietic stem cell-transplanted humanized mouse model and demonstrate that stable A3H robustly affects HIV-1 fitness in vivo. In contrast, the selection pressure mediated by intermediate A3H is relaxed. Intriguingly, viral genomic RNA sequencing reveled that HIV-1 frequently adapts to better counteract stable A3H during replication in humanized mice. Molecular phylogenetic analyses and mathematical modeling suggest that stable A3H may be a critical factor in human-to-human viral transmission. Taken together, this study provides evidence that stable variants of A3H impose selective pressure on HIV-1.


Assuntos
Aminoidrolases/genética , Citosina Desaminase/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Desaminases APOBEC , Aminoidrolases/metabolismo , Animais , Citidina Desaminase , Citosina Desaminase/metabolismo , Modelos Animais de Doenças , Células HEK293 , Infecções por HIV/transmissão , HIV-1/genética , Humanos , Camundongos , Camundongos Knockout , Modelos Genéticos , Mutação , Filogenia , RNA Viral/química , RNA Viral/genética , Análise de Sequência de RNA , Replicação Viral
6.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331087

RESUMO

The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease.IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals.


Assuntos
Desaminases APOBEC/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Felina/genética , Desaminases APOBEC/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Gatos , Evolução Molecular , Produtos do Gene vif/genética , Interações Hospedeiro-Patógeno , Vírus da Imunodeficiência Felina/metabolismo , Vírus da Imunodeficiência Felina/patogenicidade , Virulência
7.
Microbiol Immunol ; 60(6): 427-36, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27193350

RESUMO

Mammals have co-evolved with retroviruses, including lentiviruses, over a long period. Evidence supporting this contention is that viral infectivity factor (Vif) encoded by lentiviruses antagonizes the anti-viral action of cellular apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) of the host. To orchestrate E3 ubiquitin ligase complex for APOBEC3 degradation, Vifs utilize mammalian proteins such as core-binding factor beta (CBFB; for primate lentiviruses) or cyclophilin A (CYPA; for Maedi-Visna virus [MVV]). However, the co-evolutionary relationship between lentiviral Vif and the mammalian proteins associated with Vif-mediated APOBEC3 degradation is poorly understood. Moreover, it is unclear whether Vif proteins of small ruminant lentiviruses (SRLVs), including MVV and caprine arthritis encephalitis virus (CAEV), commonly utilize CYPA to degrade the APOBEC3 of their hosts. In this study, molecular phylogenetic and protein homology modeling revealed that Vif co-factors are evolutionarily and structurally conserved. It was also found that not only MVV but also CAEV Vifs degrade APOBEC3 of both sheep and goats and that CAEV Vifs interact with CYPA. These findings suggest that lentiviral Vifs chose evolutionarily and structurally stable proteins as their partners (e.g., CBFB or CYPA) for APOBEC3 degradation and, particularly, that SRLV Vifs evolved to utilize CYPA as their co-factor in degradation of ovine and caprine APOBEC3.


Assuntos
Vírus da Artrite-Encefalite Caprina/genética , Ciclofilina A/genética , Ciclofilina A/metabolismo , Citidina Desaminase/metabolismo , Produtos do Gene vif/genética , Produtos do Gene vif/metabolismo , Animais , Vírus da Artrite-Encefalite Caprina/metabolismo , Células Cultivadas , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Citidina Desaminase/genética , Evolução Molecular , Cabras , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interleucina-2/genética , Filogenia , Ovinos
8.
Microbiol Immunol ; 60(4): 272-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26935128

RESUMO

How host-virus co-evolutionary relationships manifest is one of the most intriguing issues in virology. To address this topic, the mammal-lentivirus relationship can be considered as an interplay of cellular and viral proteins, particularly apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) and viral infectivity factor (Vif). APOBEC3s enzymatically restrict lentivirus replication, whereas Vif antagonizes the host anti-viral action mediated by APOBEC3. In this study, the focus was on the interplay between feline APOBEC3 proteins and two feline immunodeficiency viruses in cats and pumas. To our knowledge, this study provides the first evidence of non-primate lentiviral Vif being incapable of counteracting a natural host's anti-viral activity mediated via APOBEC3 protein.


Assuntos
Citosina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Felina/metabolismo , Desaminases APOBEC , Animais , Gatos , Citidina Desaminase , Citosina Desaminase/genética , Evolução Molecular , Produtos do Gene vif/genética , Produtos do Gene vif/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus da Imunodeficiência Felina/genética , Vírus da Imunodeficiência Felina/imunologia , Puma , Especificidade da Espécie , Viroses/veterinária , Replicação Viral
9.
J Virol ; 90(1): 474-85, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491161

RESUMO

UNLABELLED: Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) DNA cytosine deaminases can be incorporated into progeny virions and inhibit lentiviral replication. On the other hand, viral infectivity factor (Vif) of lentiviruses antagonizes A3-mediated antiviral activities by degrading A3 proteins. It is known that domestic cat (Felis catus) APOBEC3Z3 (A3Z3), the ortholog of human APOBEC3H, potently suppresses the infectivity of vif-defective feline immunodeficiency virus (FIV). Although a recent report has shown that domestic cat encodes 7 haplotypes (hap I to hap VII) of A3Z3, the relevance of A3Z3 polymorphism in domestic cats with FIV Vif has not yet been addressed. In this study, we demonstrated that these feline A3Z3 variants suppress vif-defective FIV infectivity. We also revealed that codon 65 of feline A3Z3 is a positively selected site and that A3Z3 hap V is subject to positive selection during evolution. It is particularly noteworthy that feline A3Z3 hap V is resistant to FIV Vif-mediated degradation and still inhibits vif-proficient viral infection. Moreover, the side chain size, but not the hydrophobicity, of the amino acid at position 65 determines the resistance to FIV Vif-mediated degradation. Furthermore, phylogenetic analyses have led to the inference that feline A3Z3 hap V emerged approximately 60,000 years ago. Taken together, these findings suggest that feline A3Z3 hap V may have been selected for escape from an ancestral FIV. This is the first evidence for an evolutionary "arms race" between the domestic cat and its cognate lentivirus. IMPORTANCE: Gene diversity and selective pressure are intriguing topics in the field of evolutionary biology. A direct interaction between a cellular protein and a viral protein can precipitate an evolutionary arms race between host and virus. One example is primate APOBEC3G, which potently restricts the replication of primate lentiviruses (e.g., human immunodeficiency virus type 1 [HIV-1] and simian immunodeficiency virus [SIV]) if its activity is not counteracted by the viral Vif protein. Here we investigate the ability of 7 naturally occurring variants of feline APOBEC3, APOBEC3Z3 (A3Z3), to inhibit FIV replication. Interestingly, one feline A3Z3 variant is dominant, restrictive, and naturally resistant to FIV Vif-mediated degradation. Phylogenetic analyses revealed that the ancestral change that generated this variant could have been caused by positive Darwinian selection, presumably due to an ancestral FIV infection. The experimental-phylogenetic investigation sheds light on the evolutionary history of the domestic cat, which was likely influenced by lentiviral infection.


Assuntos
Citidina Desaminase/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus da Imunodeficiência Felina/imunologia , Vírus da Imunodeficiência Felina/fisiologia , Replicação Viral , Animais , Gatos , Citidina Desaminase/genética , Evolução Molecular , Produtos do Gene vif/deficiência , Seleção Genética
10.
Sci Rep ; 5: 14040, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26364986

RESUMO

During 2001-2002 and 2008-2011, two epidemic outbreaks of infectious hemorrhagic disease have been found in Japanese macaques (Macaca fuscata) in Kyoto University Primate Research Institute, Japan. Following investigations revealed that the causative agent was simian retrovirus type 4 (SRV-4). SRV-4 was isolated by using human cell lines, which indicates that human cells are potently susceptible to SRV-4 infection. These raise a possibility of zoonotic infection of pathogenic SRV-4 from Japanese macaques into humans. To explore the possibility of zoonotic infection of SRV-4 to humans, here we use a human hematopoietic stem cell-transplanted humanized mouse model. Eight out of the twelve SRV-4-inoculated humanized mice were infected with SRV-4. Importantly, 3 out of the 8 infected mice exhibited anemia and hemophagocytosis, and an infected mouse died. To address the possibility that SRV-4 adapts humanized mouse and acquires higher pathogenicity, the virus was isolated from an infected mice exhibited severe anemia was further inoculated into another 6 humanized mice. However, no infected mice exhibited any illness. Taken together, our findings demonstrate that the zoonotic SRV-4 infection from Japanese macaques to humans is technically possible under experimental condition. However, such zoonotic infection may not occur in the real society.


Assuntos
Infecções por Retroviridae/transmissão , Retrovirus dos Símios/patogenicidade , Zoonoses/transmissão , Desaminases APOBEC , Animais , Linhagem Celular , Citidina Desaminase , Citocinas/metabolismo , Citosina Desaminase/metabolismo , Feminino , Células HEK293 , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Humanos , Japão , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Modelos Animais , Reação em Cadeia da Polimerase , RNA Viral/análise , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Retrovirus dos Símios/genética , Retrovirus dos Símios/isolamento & purificação , Transplante Heterólogo , Zoonoses/virologia
11.
Gene ; 567(2): 189-95, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-25936996

RESUMO

Retroviral vectors are used for gene transduction into cells and have been applied to gene therapy. Retroviral vectors using envelope protein (Env) of RD-114 virus, a feline endogenous retrovirus, have been used for gene transduction. In this study, we investigated the susceptibility to RD-114 Env-pseudotyped virus in twelve domestic animals including cattle, sheep, horse, pig, dog, cat, ferret, mink, rabbit, rat, mouse, and quail. Comparison of nucleotide sequences of ASCT2 (SLC1A5), a receptor of RD-114 virus, in 10 mammalian and 2 avian species revealed that insertion and deletion events at the region C of ASCT2 where RD-114 viral Env interacts occurred independently in the mouse and rat lineage and in the chicken and quail lineage. By the pseudotype virus infection assay, we found that RD-114 Env-pseudotyped virus could efficiently infect all cell lines except those from mouse and rat. Furthermore, we confirmed that bovine ASCT2 (bASCT2) functions as a receptor for RD-114 virus infection. We also investigated bASCT2 mRNA expression in cattle tissues and found that it is expressed in various tissues including lung, spleen and kidney. These results indicate that retrovirus vectors with RD-114 virus Env can be used for gene therapy in large domestic animals in addition to companion animals such as cat and dog.


Assuntos
Retrovirus Endógenos/fisiologia , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Animais Domésticos , Sequência de Bases , Gatos , Bovinos , Linhagem Celular Tumoral , Cães , Furões/genética , Terapia Genética , Vetores Genéticos , Cavalos/genética , Mutação INDEL , Camundongos , Vison/genética , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Células NIH 3T3 , Filogenia , Codorniz/genética , Ratos , Receptores Virais/genética , Carneiro Doméstico/genética , Sus scrofa/genética , Transdução Genética
12.
Viruses ; 7(3): 1373-90, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25807049

RESUMO

Human immunodeficiency virus type 1 (HIV-1) encodes four accessory genes: vif, vpu, vpr, and nef. Recent investigations using in vitro cell culture systems have shed light on the roles of these HIV-1 accessory proteins, Vif, Vpr, Vpu, and Nef, in counteracting, modulating, and evading various cellular factors that are responsible for anti-HIV-1 intrinsic immunity. However, since humans are the exclusive target for HIV-1 infection, conventional animal models are incapable of mimicking the dynamics of HIV-1 infection in vivo. Moreover, the effects of HIV-1 accessory proteins on viral infection in vivo remain unclear. To elucidate the roles of HIV-1 accessory proteins in the dynamics of viral infection in vivo, humanized mouse models, in which the mice are xenotransplanted with human hematopoietic stem cells, has been utilized. This review describes the current knowledge of the roles of HIV-1 accessory proteins in viral infection, replication, and pathogenicity in vivo, which are revealed by the studies using humanized mouse models.


Assuntos
Modelos Animais de Doenças , Infecções por HIV/patologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Células-Tronco Hematopoéticas , Humanos , Camundongos SCID , Transplante Heterólogo
13.
Sci Rep ; 5: 8850, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25743183

RESUMO

We discovered a lethal hemorrhagic syndrome arising from severe thrombocytopenia in Japanese macaques kept at the Primate Research Institute, Kyoto University. Extensive investigation identified that simian retrovirus type 4 (SRV-4) was the causative agent of the disease. SRV-4 had previously been isolated only from cynomolgus macaques in which it is usually asymptomatic. We consider that the SRV-4 crossed the so-called species barrier between cynomolgus and Japanese macaques, leading to extremely severe acute symptoms in the latter. Infectious agents that cross the species barrier occasionally amplify in virulence, which is not observed in the original hosts. In such cases, the new hosts are usually distantly related to the original hosts. However, Japanese macaques are closely related to cynomolgus macaques, and can even hybridize when given the opportunity. This lethal outbreak of a novel pathogen in Japanese macaques highlights the need to modify our expectations about virulence with regards crossing species barriers.


Assuntos
Doenças Transmissíveis Emergentes/complicações , Doenças Transmissíveis Emergentes/virologia , Infecções por Retroviridae/complicações , Infecções por Retroviridae/virologia , Retrovirus dos Símios/classificação , Retrovirus dos Símios/genética , Trombocitopenia/etiologia , Animais , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/transmissão , Feminino , Genoma Viral , Macaca , Metagenômica/métodos , Filogenia , RNA Viral , Infecções por Retroviridae/diagnóstico , Infecções por Retroviridae/transmissão , Retrovirus dos Símios/isolamento & purificação , Retrovirus dos Símios/ultraestrutura , Trombocitopenia/diagnóstico
14.
J Virol ; 89(7): 3965-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25609821

RESUMO

UNLABELLED: In 2001-2002, six of seven Japanese macaques (Macaca fuscata) died after developing hemorrhagic syndrome at the Kyoto University Primate Research Institute (KUPRI). While the cause of death was unknown at the time, we detected simian retrovirus 4 (SRV-4) in samples obtained from a similar outbreak in 2008-2011, during which 42 of 43 Japanese macaques died after exhibiting hemorrhagic syndrome. In this study, we isolated SRV-4 strain PRI-172 from a Japanese macaque showing severe thrombocytopenia. When inoculated into four Japanese macaques, the isolate induced severe thrombocytopenia in all within 37 days. We then constructed an infectious molecular clone of strain PRI-172, termed pSR415, and inoculated the clone-derived virus into two Japanese macaques. These animals also developed severe thrombocytopenia in just 31 days after inoculation, and the virus was reisolated from blood, bone marrow, and stool. At necropsy, we observed bleeding from the gingivae and subcutaneous bleeding in all animals. SRV-4 infected a variety of tissues, especially in digestive organs, including colon and stomach, as determined by real-time reverse transcription-PCR (RT-PCR) and immunohistochemical staining. Furthermore, we identified the SRV-4 receptor as ASCT2, a neutral amino acid transporter. ASCT2 mRNA was expressed in a variety of tissues, and the distribution of SRV-4 proviruses in infected Japanese macaques correlated well with the expression levels of ASCT2 mRNA. From these results, we conclude that the causative agent of hemorrhagic syndrome in KUPRI Japanese macaques was SRV-4, and its receptor is ASCT2. IMPORTANCE: During two separate outbreaks at the KUPRI, in 2001-2002 and 2008-2011, 96% of Japanese macaques (JM) that developed an unknown hemorrhagic syndrome died. Here, we isolated SRV-4 from a JM developing thrombocytopenia. The SRV-4 isolate and a molecularly cloned SRV-4 induced severe thrombocytopenia in virus-inoculated JMs within 37 days. At necropsy, we observed bleeding from gingivae and subcutaneous bleeding in all affected JMs and reisolated SRV-4 from blood, bone marrow, and stool. The distribution of SRV-4 proviruses in tissues correlated with the mRNA expression levels of ASCT2, which we identified as the SRV-4 receptor. From these results, we conclude that SRV-4 was the causative agent of hemorrhagic syndrome in JMs in KUPRI.


Assuntos
Betaretrovirus/fisiologia , Betaretrovirus/patogenicidade , Hemorragia/etiologia , Doenças dos Primatas/patologia , Doenças dos Primatas/virologia , Infecções por Retroviridae/veterinária , Trombocitopenia/veterinária , Animais , Sangue/virologia , Medula Óssea/virologia , Fezes/virologia , Trato Gastrointestinal/patologia , Trato Gastrointestinal/virologia , Imuno-Histoquímica , Macaca , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Retroviridae/complicações , Infecções por Retroviridae/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trombocitopenia/complicações , Trombocitopenia/etiologia
15.
J Gen Virol ; 96(Pt 4): 887-892, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25516542

RESUMO

APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3) proteins are cellular DNA deaminases that restrict a broad spectrum of lentiviruses. This process is counteracted by Vif (viral infectivity factor) of lentiviruses, which binds APOBEC3s and promotes their degradation. CBF-ß (core binding factor subunit ß) is an essential co-factor for the function of human immunodeficiency virus type 1 Vif to degrade human APOBEC3s. However, the requirement for CBF-ß in Vif-mediated degradation of other mammalian APOBEC3 proteins is less clear. Here, we determined the sequence of feline CBFB and performed phylogenetic analyses. These analyses revealed that mammalian CBFB is under purifying selection. Moreover, we demonstrated that CBF-ß is dispensable for feline immunodeficiency virus Vif-mediated degradation of APOBEC3s of its host. These findings suggested that primate lentiviruses have adapted to use CBF-ß, an evolutionary stable protein, to counteract APOBEC3 proteins of their hosts after diverging from other lentiviruses.


Assuntos
Subunidade beta de Fator de Ligação ao Core/metabolismo , Citidina Desaminase/metabolismo , HIV-1/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminases APOBEC , Animais , Gatos , Linhagem Celular , Citosina Desaminase/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Filogenia
16.
Virus Res ; 196: 128-34, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25463055

RESUMO

Baboon endogenous virus (BaEV) is an infectious endogenous gammaretrovirus isolated from a baboon placenta. BaEV-related sequences have been identified in both Old World monkeys and African apes, but not in humans or Asian apes. Recently, it was reported that BaEV-like particles were produced from Vero cells derived from African green monkeys by chemical induction, and thus BaEV-like particles may contaminate biological products manufactured using Vero cells. In this study, we constructed an infectious molecular clone of BaEV strain M7. We found two putative L-domain motifs, PPPY and PSAP, in the pp15 region of Gag. To examine the function of the L-domain motifs, we conducted virus budding assay using L-domain motif mutants. We revealed that the PPPY motif, but not the PSAP motif, plays a major role as the L-domain in BaEV budding. We also demonstrated that Vps4A/B are involved in BaEV budding. These data suggest that BaEV Gag recruits the cellular endosomal sorting complex required for transport (ESCRT) machinery through the interaction of the PPPY L-domain with cellular factors. These data will be useful for controlling contamination of BaEV-like particles in biological products in the future.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Gammaretrovirus/fisiologia , Corpos Multivesiculares/metabolismo , Mutação , Replicação Viral , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Produtos do Gene gag/química , Produtos do Gene gag/genética , Genoma Viral , Interações Hospedeiro-Patógeno , Humanos , Dados de Sequência Molecular , Corpos Multivesiculares/virologia , Domínios e Motivos de Interação entre Proteínas , RNA Viral , Células Vero , Liberação de Vírus
17.
Microbiol Immunol ; 58(8): 432-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24931347

RESUMO

PERV is integrated into the genome of all pigs. PERV-A and PERV-B are polytropic and can productively infect human cell lines, whereas PERV-C is ecotropic. Recombinant PERV-A/C can infect human cells and exhibits high titer replication. Therefore, use of pigs for human xenotransplantation raises concerns about the risks of transfer of this infectious agent from donors to xenotransplantation recipients. To establish strategies to inhibit PERV production from cells, in the present study, we investigated the mechanism of PERV budding and anti-PERV activity of Tetherin/BST-2. The results showed that DN mutants of WWP-2, Tsg101, and Vps4A/B markedly reduced PERV production in human and porcine cell lines, suggesting that PERV budding uses these cellular factors and the cellular MVB sorting pathway as well as many other retroviruses. Moreover, PERV production was also reduced by human and porcine Tetherin/BST-2. These data are useful for developing strategies to inhibit PERV production and may reduce the risk of PERV infection in xenotransplantation.


Assuntos
Retrovirus Endógenos/fisiologia , Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia , Doenças dos Suínos/virologia , Liberação de Vírus , Animais , Linhagem Celular , Regulação para Baixo , Retrovirus Endógenos/genética , Retrovirus Endógenos/isolamento & purificação , Humanos , Receptores Virais/metabolismo , Infecções por Retroviridae/etiologia , Infecções por Retroviridae/metabolismo , Suínos , Doenças dos Suínos/metabolismo , Transplante Heterólogo/efeitos adversos , Replicação Viral
18.
FEBS Lett ; 588(1): 41-6, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24239536

RESUMO

Koala retrovirus (KoRV) is a gammaretrovirus which may induce immune suppression, leukemia and lymphoma in koalas. Currently three KoRV subgroups (A, B, and J) have been reported. Our phylogenetic analysis suggests that KoRV-B and KoRV-J should be classified as the same subgroup. In long terminal repeat (LTR), a KoRV-B isolate has four 17 bp tandem repeats named direct repeat (DR)-1, while a KoRV-J isolate (strain OJ-4) has three 37 bp tandem repeats named DR-2. We also found that the promoter activity of the KoRV-J strain OJ-4 is stronger than that of original KoRV-A, suggesting that KoRV-J may replicate more efficiently than KoRV-A.


Assuntos
Gammaretrovirus/genética , Produtos do Gene env/genética , Phascolarctidae/virologia , Sequências Repetidas Terminais/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Gammaretrovirus/classificação , Gammaretrovirus/isolamento & purificação , Produtos do Gene env/classificação , Células HEK293 , Humanos , Células Jurkat , Células K562 , Luciferases/genética , Luciferases/metabolismo , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Células U937
19.
J Virol ; 87(8): 4322-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23365453

RESUMO

Simian retrovirus type 4 (SRV-4), a simian type D retrovirus, naturally infects cynomolgus monkeys, usually without apparent symptoms. However, some infected monkeys presented with an immunosuppressive syndrome resembling that induced by simian immunodeficiency virus infection. Antiretrovirals with inhibitory activity against SRV-4 are considered to be promising agents to combat SRV-4 infection. However, although some antiretrovirals have been reported to have inhibitory activity against SRV-1 and SRV-2, inhibitors with anti-SRV-4 activity have not yet been studied. In this study, we identified antiretroviral agents with anti-SRV-4 activity from a panel of anti-human immunodeficiency virus (HIV) drugs using a robust in vitro luciferase reporter assay. Among these, two HIV reverse transcriptase inhibitors, zidovudine (AZT) and tenofovir disoproxil fumarate (TDF), potently inhibited SRV-4 infection within a submicromolar to nanomolar range, which was similar to or higher than the activities against HIV-1, Moloney murine leukemia virus, and feline immunodeficiency virus. In contrast, nonnucleoside reverse transcriptase inhibitors and protease inhibitors did not exhibit any activities against SRV-4. Although both AZT and TDF effectively inhibited cell-free SRV-4 transmission, they exhibited only partial inhibitory activities against cell-to-cell transmission. Importantly, one HIV integrase strand transfer inhibitor, raltegravir (RAL), potently inhibited single-round infection as well as cell-free and cell-to-cell SRV-4 transmission. These findings indicate that viral expansion routes impact the inhibitory activity of antiretrovirals against SRV-4, while only RAL is effective in suppressing both the initial SRV-4 infection and subsequent SRV-4 replication.


Assuntos
Antirretrovirais/farmacologia , Retrovirus dos Símios/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Sequência de Aminoácidos , Animais , Genes Reporter , Integrases/genética , Luciferases/análise , Luciferases/genética , Testes de Sensibilidade Microbiana/métodos , Organofosfonatos/farmacologia , Inibidores de Proteases/farmacologia , DNA Polimerase Dirigida por RNA/genética , Inibidores da Transcriptase Reversa/farmacologia , Alinhamento de Sequência , Tenofovir , Zidovudina/farmacologia
20.
Virus Genes ; 45(2): 393-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22639102

RESUMO

RD-114 virus is a replication-competent feline endogenous retrovirus. RD-114 virus contaminates several feline and canine live attenuated vaccines and the issue of contamination of RD-114 virus in vaccines should be solved. To date, three infectious molecular clones (pSc3c, pCRT1, and pRD-UCL) have been reported. In this study, we sequenced the entire nucleotide sequence of pRD-UCL and compared the nucleotide sequences of the three infectious molecular clones. As a result, these three infectious clones were nearly identical with each other in gag-pol and env coding regions. These data support the notion that the active locus of infectious RD-114 virus is single in the feline genome. The length of long terminal repeat (LTR) of pCRT1 was 47 bp shorter than those of pSc3c and pRD-UCL. The 47-bp sequence named direct repeat A (DR-A) was duplicated in the U3 region in pSc3c and pRD-UCL. Although several potential enhancer binding sites are present in the DR-A, there was no significant difference in promoter activities between the LTRs of pRD-UCL and pCRT1 in two human cell lines. We also analyzed the splicing pattern of the RD-114 virus by reverse transcription-polymerase chain reaction and confirmed that RD-114 virus is a simple retrovirus. The data presented here will provide basic information about RD-114 virus to solve the contamination issue in live attenuated vaccines.


Assuntos
DNA Viral/genética , Retrovirus Endógenos/genética , Genoma Viral , Análise de Sequência de DNA , Animais , Gatos , Linhagem Celular , DNA Viral/química , Retrovirus Endógenos/isolamento & purificação , Produtos do Gene env/genética , Produtos do Gene gag/genética , Produtos do Gene pol/genética , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Splicing de RNA , Homologia de Sequência do Ácido Nucleico , Sequências Repetidas Terminais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA