Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 22(3): 496-500, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32969164

RESUMO

Synthetic small molecules that redirect endogenous antibodies to target cells are promising drug candidates because they overcome the potential shortcomings of therapeutic antibodies, such as immunogenicity and the need for intravenous delivery. Previously, we reported a novel class of bispecific molecules targeting the antibody Fc region and folate receptor, named Fc-binding antibody-recruiting molecules (Fc-ARMs). Fc-ARMs can theoretically recruit most endogenous antibodies, inducing antibody-dependent cell-mediated cytotoxicity (ADCC) to eliminate cancer cells. Herein, we describe new Fc-ARMs that target prostate cancer (Fc-ARM-Ps). Fc-ARM-Ps recruited antibodies to cancer cells expressing prostate-specific membrane antigen but did so with lower efficiency compared with Fc-ARMs targeting the folate receptor. Upon recruitment by Fc-ARM-P, defucosylated antibodies efficiently activated natural killer cells and induced ADCC, whereas antibodies with intact N-glycans did not. The results suggest that the affinity between recruited antibodies and CD16a, a type of Fc receptor expressed on immune cells, could be a key factor controlling immune activation in the Fc-ARM strategy.


Assuntos
Anticorpos Monoclonais/química , Antígenos de Superfície/química , Glutamato Carboxipeptidase II/química , Fragmentos Fc das Imunoglobulinas/química , Anticorpos Monoclonais/imunologia , Reações Antígeno-Anticorpo , Antígenos de Superfície/imunologia , Glutamato Carboxipeptidase II/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Estrutura Molecular
2.
Biol Pharm Bull ; 43(9): 1301-1305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879203

RESUMO

Enhancing blood flow to tumors is a prominent strategy for improving the tumor accumulation of macromolecular drugs through the enhanced permeability and retention (EPR) effect. IRL-1620 is an agonist of the endothelin B receptor, and is a promising molecule to enhance tumor blood flow by activating endothelial nitric oxide synthase. However, contradictory effects on tumor blood flow modulation have been reported because the effects of IRL-1620 may differ in different animal models. Here, we examined for the first time the effect of IRL-1620 on the EPR effect for PEGylated liposomes in a CT-26 murine colon cancer model. Co-injection of IRL-1620 at an optimum dose (3 nmol/kg) nearly doubled the tumor accumulation of liposomes compared with controls, indicating that IRL-1620 enhanced the EPR effect in the present colon cancer model. Co-injection of IRL-1620 is a promising strategy to improve the therapeutic effects of macromolecular drugs while reducing their side effects.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Antagonistas do Receptor de Endotelina B/administração & dosagem , Endotelinas/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Linhagem Celular Tumoral/transplante , Colo/patologia , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Lipossomos , Masculino , Camundongos , Permeabilidade/efeitos dos fármacos , Receptor de Endotelina B/metabolismo
3.
Int J Pharm ; 586: 119521, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32561308

RESUMO

Zwitterionic polycarboxybetaines (PCBs) have gained attention as alternative stealth polymers whose liposomal formulation and protein conjugates were reported not to elicit anti-polymer antibodies. Here, we studied the blood retention and antigenicity of liposomes modified with PCBs focusing on their chemical structures and doses. We compared PCBs with either 1 or 3 (PCB1 or PCB3) spacer carbons between the carboxylate and ammonium groups. PCB3-modified liposomes had a short blood retention, whereas PCB1-modified liposomes demonstrated extended blood retention that was somewhat superior to PEGylated liposome. This confirmed the excellent non-fouling nature of PCB1 reported previously. Interestingly, PCB1-liposome as well as PCB3-liposome elicited specific IgMs toward each PCB. The dose-dependent production of specific IgMs to PCB-liposomes was similar to that of PEGylated liposome, i.e., high doses of PCB-liposomes reduced the production of specific IgMs, termed immunological tolerance. These results indicate the importance of investigating the effect of dose to clarify the existence of antigenicity of stealth polymers.


Assuntos
Betaína/química , Imunoglobulina M/imunologia , Polietilenoglicóis/química , Polímeros/química , Animais , Betaína/sangue , Betaína/imunologia , Relação Dose-Resposta a Droga , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polietilenoglicóis/farmacocinética , Polímeros/farmacocinética
4.
Int J Pharm ; 583: 119352, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32325243

RESUMO

Although monoclonal antibodies (mAbs) have revolutionized cancer treatment, their accumulation in solid tumors is limited and requires improvement to enhance therapeutic efficacy. Here we developed a strategy to modify mAb with a donor of nitric oxide (NO) because NO functions to vasodilate as well as to enhance the permeability of vascular endothelium, which will contribute to enhancing the tumor accumulation of mAb. We selected S-nitrosothiol as a NO donor and established the procedure to modify S-nitrosothiol group on mAb under ambient conditions. The modified mAb (Ab-SNO) thus obtained released NO in a preferable speed and maintained its original properties such as binding affinity to a target antigen and efficacy to induce antibody-dependent cellular cytotoxicity. We demonstrated that Ab-SNO enhanced the tumor accumulation of co-administered proteins such as antibody and serum albumin.


Assuntos
Antineoplásicos Imunológicos , Cetuximab , Neoplasias/tratamento farmacológico , Doadores de Óxido Nítrico , Células A549 , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/química , Cetuximab/administração & dosagem , Cetuximab/química , Liberação Controlada de Fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/metabolismo , Doadores de Óxido Nítrico/administração & dosagem , Doadores de Óxido Nítrico/química
5.
Int J Pharm ; 565: 481-487, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31102802

RESUMO

The modulation of blood flow to tumors is a prominent strategy for improving the tumor accumulation of nanomedicines, resulting from the enhanced permeability and retention (EPR) effect. We previously reported a promising EPR enhancer-a nitric oxide (NO) donor-containing liposome (NO-LP)-which showed enhanced accumulation in tumor tissue. Herein, we study NO-LP in greater detail to clarify its practical use as an EPR enhancer. NO-LP was found to have advantages as a NO donor, including the ability to maintain NO donation over long periods of time, and a constant rate of NO-release irrespective of the environmental pH. NO-LP showed rapid accumulation in tumor tissue after injection (1 h), and then accumulation was continuously enhanced until 48 h. Enhanced NO-LP accumulation was observed specifically in tumor, while the accumulation in other organs remained relatively unchanged. The results obtained show the promising features of NO-LP as an EPR enhancer.


Assuntos
Neoplasias/metabolismo , Doadores de Óxido Nítrico/administração & dosagem , Óxido Nítrico/metabolismo , Compostos Nitrosos/administração & dosagem , Animais , Linhagem Celular Tumoral , Lipossomos , Masculino , Camundongos Endogâmicos BALB C , Permeabilidade
6.
Medchemcomm ; 8(2): 415-421, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108759

RESUMO

We propose a method to improve the enhanced permeability and retention (EPR) effect of nanomedicines based on tumor-specific vasodilation using a nitric oxide (NO) donor-containing liposome. NONOate, a typical NO donor, was incorporated into a PEGylated liposome to retard the protonation-induced release of NO from NONOate by the protecting lipid bilayer membrane. The NONOate-containing liposome (NONOate-LP) showed similar blood retention to an empty PEGylated liposome but almost twice the amount accumulated within the tumor. This improvement in the EPR effect is thought to have been caused by specific vasodilation in the tumor tissue by NO released from the NONOate-LP accumulated in the tumor. The improved EPR effect by NONOate-LP will be useful for the accumulation of co-administered nanomedicines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA