Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(5): e59964, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854229

RESUMO

Sturge-Weber syndrome (SWS) is characterized by hemangiomas, glaucoma, and central nervous system disorders. Here, we report the case of a 15-year-old boy with SWS and upper-lip hypertrophy who underwent surgical orthodontic treatment for correction of a large overjet and deep overbite. In addition to the a large overjet and deep overbite, interdental spacing was observed in both the arches. The mandible was retrognathic and deviated to the right side. No maxillary occlusal canting or temporomandibular joint symptoms were observed. The patient was diagnosed with skeletal maxillary protrusion with spaced dentition and mandibular deviation to the right due to SWS. After presurgical orthodontic treatment using a multibracket appliance, we performed a sagittal split ramus osteotomy (SSRO) alone due to the presence of a hemangioma around the maxilla. No abnormal bleeding or cerebral hemorrhage due to increased blood pressure was observed during the SSRO. Postoperatively, the maxillary and mandibular arches were well-aligned, the deep overbite and excessive overjet improved, and bilateral angle class I molar and canine relationships were established. Furthermore, mandibular deviation improved, and the midlines of both arches approximately coincided with the facial midline. In conclusion, orthognathic surgery is feasible in patients with SWS after carefully evaluating the sites and sizes of the hemangiomas.

2.
Arch Oral Biol ; 158: 105854, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056228

RESUMO

OBJECTIVE: Root resorption may occur during orthodontic treatment. Herein, we investigated the effect of a culture supernatant of stem cells derived from human exfoliated deciduous teeth on root resorption. DESIGN: Twelve 8-week-old male Sprague-Dawley rats were used, and their maxillary first molars were pulled with excessive orthodontic force to induce root resorption. On days 1 and 7 after traction initiation, stem cells derived from human exfoliated deciduous teeth and alpha minimum essential medium (control group) were administered. After 14 days, the maxillary bone was evaluated for tooth movement. The expression of osteoprotegerin, receptor activator of nuclear factor κB ligand, tumor necrosis factor α, interleukin 1ß, interleukin 6, and interleukin 17 was evaluated on the compression side and tension side. RESULTS: No significant difference in tooth movement was observed between the two groups. Root resorption decreased in the group administered the culture supernatant compared with in the control. Immunohistochemical staining revealed increased osteoprotegerin expression and decreased receptor activators for nuclear factor κB ligand, tumor necrosis factor α, interleukin 1ß, interleukin 6, and interleukin 17 on the compression side and tension side. CONCLUSIONS: Administration of stem cells derived from human exfoliated deciduous teeth affected the expression of osteoprotegerin, receptor activator of nuclear factor κB ligand, tumor necrosis factor α, interleukin 1ß, interleukin 6 and interleukin 17; hence, these stem cells may inhibit root resorption by regulating their expression.


Assuntos
Reabsorção da Raiz , Ratos , Humanos , Masculino , Animais , Reabsorção da Raiz/metabolismo , Osteoprotegerina/metabolismo , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Osteoclastos , Interleucina-6/metabolismo , Ligante RANK/metabolismo , Interleucina-1beta/metabolismo , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Dente Decíduo , Técnicas de Movimentação Dentária
3.
Artigo em Inglês | MEDLINE | ID: mdl-37263812

RESUMO

OBJECTIVES: The objective was to evaluate the robustness of deep learning (DL)-based encoder-decoder convolutional neural networks (ED-CNNs) for segmenting temporomandibular joint (TMJ) articular disks using data sets acquired from 2 different 3.0-T magnetic resonance imaging (MRI) scanners using original images and images subjected to contrast-limited adaptive histogram equalization (CLAHE). STUDY DESIGN: In total, 536 MR images from 49 individuals were examined. An expert orthodontist identified and manually segmented the disks in all images, which were then reviewed by another expert orthodontist and 2 expert oral and maxillofacial radiologists. These images were used to evaluate a DL-based semantic segmentation approach using an ED-CNN. Original and preprocessed CLAHE images were used to train and validate the models whose performances were compared. RESULTS: Original and CLAHE images acquired on 1 scanner had pixel values that were significantly darker and with lower contrast. The values of 3 metrics-the Dice similarity coefficient, sensitivity, and positive predictive value-were low when the original MR images were used for model training and validation. However, these metrics significantly improved when images were preprocessed with CLAHE. CONCLUSIONS: The robustness of the ED-CNN model trained on a dataset obtained from a single device is low but can be improved with CLAHE preprocessing. The proposed system provides promising results for a DL-based, fully automated segmentation method for TMJ articular disks on MRI.

4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835460

RESUMO

Regenerative therapy for tissues by mesenchymal stem cell (MSCs) transplantation has received much attention. The cluster of differentiation (CD)146 marker, a surface-antigen of stem cells, is crucial for angiogenic and osseous differentiation abilities. Bone regeneration is accelerated by the transplantation of CD146-positive deciduous dental pulp-derived mesenchymal stem cells contained in stem cells from human exfoliated deciduous teeth (SHED) into a living donor. However, the role of CD146 in SHED remains unclear. This study aimed to compare the effects of CD146 on cell proliferative and substrate metabolic abilities in a population of SHED. SHED was isolated from deciduous teeth, and flow cytometry was used to analyze the expression of MSCs markers. Cell sorting was performed to recover the CD146-positive cell population (CD146+) and CD146-negative cell population (CD146-). CD146 + SHED without cell sorting and CD146-SHED were examined and compared among three groups. To investigate the effect of CD146 on cell proliferation ability, an analysis of cell proliferation ability was performed using BrdU assay and MTS assay. The bone differentiation ability was evaluated using an alkaline phosphatase (ALP) stain after inducing bone differentiation, and the quality of ALP protein expressed was examined. We also performed Alizarin red staining and evaluated the calcified deposits. The gene expression of ALP, bone morphogenetic protein-2 (BMP-2), and osteocalcin (OCN) was analyzed using a real-time polymerase chain reaction. There was no significant difference in cell proliferation among the three groups. The expression of ALP stain, Alizarin red stain, ALP, BMP-2, and OCN was the highest in the CD146+ group. CD146 + SHED had higher osteogenic differentiation potential compared with SHED and CD146-SHED. CD146 contained in SHED may be a valuable population of cells for bone regeneration therapy.


Assuntos
Osteogênese , Células-Tronco , Dente Decíduo , Humanos , Antígeno CD146/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Polpa Dentária/metabolismo , Osteocalcina/metabolismo , Células-Tronco/citologia , Dente Decíduo/citologia
5.
Oral Dis ; 29(2): 725-734, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34510661

RESUMO

OBJECTIVE: Stem cells from human exfoliated deciduous teeth (SHED) have bone regeneration ability and potential therapeutic applications. CD146, a cell adhesion protein expressed by vascular endothelial cells, is involved in osteoblastic differentiation of stem cells. The effect of CD146 on SHED-mediated bone regeneration in vivo remains unknown. We aimed to establish efficient conditions for SHED transplantation. MATERIALS AND METHODS: SHED were isolated from the pulp of an extracted deciduous tooth and cultured; CD146-positive (CD146+ ) and CD146-negative (CD146- ) populations were sorted. Heterogeneous populations of SHED and CD146+ and CD146- cells were transplanted into bone defects generated in the skulls of immunodeficient mice. Micro-computed tomography was performed immediately and 4 and 8 weeks later. Histological and immunohistochemical assessments were performed 8 weeks later. RESULTS: Bone regeneration was observed upon transplantation with CD146+ and heterogeneous populations of SHED, with significantly higher bone regeneration observed with CD146+ cells. Bone regeneration was higher in the CD146- group than in the control group, but significantly lower than that in the other transplant groups at 4 and 8 weeks. Histological and immunohistochemical assessments revealed that CD146+ cells promoted bone regeneration and angiogenesis. CONCLUSION: Transplantation of CD146+ SHED into bone defects may be useful for bone regeneration.


Assuntos
Regeneração Óssea , Células Endoteliais , Humanos , Camundongos , Animais , Antígeno CD146 , Microtomografia por Raio-X , Crânio/cirurgia , Diferenciação Celular , Dente Decíduo , Polpa Dentária
6.
Diagnostics (Basel) ; 12(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35204495

RESUMO

Malocclusion and morphological abnormalities of the jawbone often affect the stomatognathic function and long-term postoperative stability in patients with jaw deformities. There are few reports on the effect of maximum tongue pressure (MTP) in these patients. We investigated the relationship between the MTP and jawbone morphology and the effect of the MTP on surgery in 42 patients with jaw deformity who underwent surgical orthodontic treatment at Hiroshima University Hospital. The MTP was measured using a tongue pressure measurement device; the average value was considered as the MTP. Based on the MTP measured before surgery, patients were classified into the high- or the low-MTP group. The clinical findings and results of the cephalometric analysis were compared. Posterior movement of the mandible in the high-MTP group was significantly lower than that in the low-MTP group. The ANB angle, overjet, and overbite in the high-MTP group were significantly smaller than those in the low-MTP group. On the other hand, there was no difference between the two groups in the measured values, indicating a labial inclination of the anterior teeth (U1 to SN, U1 to FH, IMPA, and FMIA). MTP has been suggested to affect mandibular prognathism in patients with jaw deformities.

7.
Arch Oral Biol ; 116: 104770, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32470833

RESUMO

OBJECTIVE: Baicalin mediates bone metabolism and has shown protective activity against periodontal tissue damage in a rat model of periodontitis. Therefore, we hypothesized that baicalin may inhibit the root resorption that occurs during orthodontic tooth movement and examined its effect on the histological changes in periodontal tissue that occur during tooth movement. METHODS: First molars of rats were subjected to traction using excessive orthodontic force to produce a root resorption model. Rats in the baicalin group received baicalin for 3 weeks during tooth movement, and the amount of first molar movement on day 21 after the initiation of traction was measured by three-dimensional micro-computed tomography analysis. After tooth movement, tissue samples from the mesial and tension sides were collected, and successive horizontal sections were prepared and examined using hematoxylin-eosin and tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical staining for the receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG). The severity of root resorption was also determined by histological analysis. RESULTS: There was no significant intergroup difference in tooth movement during the experimental exaggerated tooth movement. In comparison with the control group, the baicalin-treated group showed increased OPG expression, suppressed RANKL expression, and significantly fewer TRAP-positive cells in the first molars. The root resorption area was significantly smaller in the baicalin group. CONCLUSIONS: Treatment with baicalin prevented root resorption without preventing tooth movement. Baicalin may be useful for the management of root resorption during orthodontic treatment.


Assuntos
Anti-Infecciosos , Flavonoides , Reabsorção da Raiz , Técnicas de Movimentação Dentária , Animais , Anti-Infecciosos/farmacologia , Flavonoides/farmacologia , Osteoclastos , Ligante RANK , Ratos , Roedores , Reabsorção da Raiz/tratamento farmacológico , Reabsorção da Raiz/prevenção & controle , Raiz Dentária , Microtomografia por Raio-X
8.
Curr Pharm Des ; 24(25): 2993-3001, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30112985

RESUMO

Amelogenins are enamel matrix proteins that play crucial roles in enamel formation. Previous studies have indicated that amelogenin and amelogenin C-terminal peptides have cell-signaling functions. Recently, adipocyte-derived mesenchymal stem cells (ADSCs) have received attention as a potential source of stem cells for use in regeneration therapy. In this study, we examined the effects of human full-length amelogenin (rh174) and amelogenin C-terminal peptide (amgCP) on the proliferation of ADSCs. ADSCs were cultured in the presence of amgCP or rh174. Cell proliferation was analyzed using BrdU immunoassay and MTS assay. Cell migration was evaluated by ELISA. The MAPK-ERK pathway was examined by phospho-p44/42 MAPK (Thr202/Tyr204) sandwich ELISA and western blotting. A specific MAPK inhibitor, U0126, was used to block ERK activity. ADSC proliferation and migration were significantly (P < 0.05) increased in the presence of rh174 or amgCP compared to non-treated control cells. The increased proliferation of ADSCs induced by rh174 or amgCP was significantly (P < 0.05) inhibited in the presence of 2 µg/ml U0126. The pERK/tERK ratio was significantly (P < 0.05) increased upon treatment with rh174 or amgCP compared to non-treated ADSCs, while this increase was significantly (P < 0.05) suppressed by the addition of U0126. Similar results were found by western blot analysis. In conclusion, amgCP and rh174 increase ADSC proliferation via the MAPK-ERK signaling pathway, and ADSCs may be useful for tissue regeneration in the orofacial region.


Assuntos
Tecido Adiposo/metabolismo , Amelogenina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Peptídeos/metabolismo , Tecido Adiposo/citologia , Proliferação de Células , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais
9.
J Periodontol ; 89(4): 496-505, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29683502

RESUMO

BACKGROUND: Amelogenins are a family of enamel matrix proteins that are important for formation of enamel. Amelogenins may induce division of mesenchymal stem cells (MSCs), among others. Recently, the C-terminus of the amelogenin peptide (AMG-CP) has been shown to enhance the proliferation of cementoblast lineage cells. The role of the amelogenin peptide on the proliferation of human MSCs and related alterations in the intracellular signaling pathway were studied. METHODS: MSCs were exposed to AMG-CP in vitro. The MTS and 5-bromo-2'-deoxyuridine (BrdU) assays were used to determine proliferation. Expression of the amelogenin receptor, lysosomal-associated membrane protein 1 (LAMP1), was examined in MSCs with western blotting. Binding of AMG-CP to LAMP1 was inhibited with anti-LAMP1 antibody. Components of the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) pathway were studied with western blotting and enzyme-linked immunosorbent assay, and U0126, an MAPK inhibitor, was used to inhibit ERK activity. RESULTS: MSC proliferation was significantly increased in the presence of AMG-CP and significantly inhibited by anti-LAMP1 antibody or U0126. Increased phosphorylated ERK1/2 was observed in the presence of AMG-CP, and decreased phosphorylated ERK1/2 was seen in the presence of anti-LAMP1 antibody or U0126. CONCLUSION: A C-terminal amelogenin variant increased the proliferation of MSCs via an interaction with LAMP1 and the MAPK-ERK signaling pathway, indicating the possibility of using MSCs for tissue regeneration in the craniofacial region.


Assuntos
Células-Tronco Mesenquimais , Amelogenina , Células da Medula Óssea , Proliferação de Células , Cemento Dentário , Humanos , Peptídeos
10.
Lasers Surg Med ; 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29399884

RESUMO

BACKGROUND AND OBJECTIVES: Tooth movement during orthodontic treatment is associated with bone neoplasticity and bone resorption on the tension and pressure sides. Previous clinical studies have suggested that low-power laser irradiation can accelerate tooth movement during orthodontic treatment, although the underlying mechanism remains unclear. In this study, we used a high-frequency near-infrared diode laser that generates less heat and examined the histologic changes in periodontal tissue during experimental tooth movement with laser irradiation. METHODS: A nickel-titanium closed coil was mounted between the maxillary left side first molar and incisor of rats to model experimental tooth movement. The laser-irradiation and the control groups were set, and the amount of movement of the first molar on 7th and 14th days after the start of pulling of the first molar tooth on the maxillary left was measured by three-dimensional analysis of µCT. After tooth movement, tissue samples from the mesial and tension sides were collected, and successive horizontal sections were prepared and examined using hematoxylin-eosin and TRAP staining and immunohistochemical staining for RANKL, OPG, ALP, and proliferating cell nuclear antigen (PCNA). Changes in tissue temperature following laser irradiation were also examined. RESULTS: Laser irradiation significantly increased tooth movement compared with non-irradiated controls. Histologic staining of the pressure-side mesial root in laser-irradiated rats revealed enhanced RANKL expression and increased numbers of TRAP-positive cells compared with controls. By contrast, on the tension side, laser irradiation led to increased expression of ALP and PCNA. These data indicate that high-frequency near-infrared diode laser irradiation on the pressure side upregulates RANKL expression and accelerates osteoclast differentiation, facilitating bone resorption, whereas bone formation is induced on the tension side. CONCLUSION: This study demonstrates that high-frequency near-infrared diode laser irradiation of periodontal tissue leads to metabolic activation, which ultimately increases the rate of tooth movement. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.

11.
Lasers Med Sci ; 33(5): 959-966, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29302842

RESUMO

Laser irradiation activates a range of cellular processes and can promote tissue repair. Here, we examined the effects of high-frequency near-infrared (NIR) diode laser irradiation on the proliferation and migration of mouse calvarial osteoblastic cells (MC3T3-E1). MC3T3-E1 cells were cultured and exposed to high-frequency (30 kHz) 910-nm diode laser irradiation at a dose of 0, 1.42, 2.85, 5.7, or 17.1 J/cm2. Cell proliferation was evaluated with BrdU and ATP concentration assays. Cell migration was analyzed by quantitative assessment of wound healing using the Incucyt® ZOOM system. In addition, phosphorylation of mitogen-activated protein kinase (MAPK) family members including p38 mitogen-activated protein kinase (p38), stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK), and extracellular signal-regulated protein kinase (ERK)1/2) after laser irradiation was examined with western blotting. Compared to the control, cell proliferation was significantly increased by laser irradiation at a dose of 2.85, 5.7, or 17.1 J/cm2. Laser irradiation at a dose of 2.85 J/cm2 induced MC3T3-E1 cells to migrate more rapidly than non-irradiated control cells. Irradiation with the high-frequency 910-nm diode laser at a dose of 2.85 J/cm2 induced phosphorylation of MAPK/ERK1/2 15 and 30 min later. However, phosphorylation of p38 MAPK and SAPK/JNK was not changed by NIR diode laser irradiation at a dose of 2.85 J/cm2. Irradiation with a high-frequency NIR diode laser increased cell division and migration of MT3T3-E1 cells, possibly via MAPK/ERK signaling. These observations may be important for enhancing proliferation and migration of osteoblasts to improve regeneration of bone tissues.


Assuntos
Movimento Celular/efeitos da radiação , Raios Infravermelhos , Lasers Semicondutores , Osteoblastos/citologia , Osteoblastos/efeitos da radiação , Crânio/citologia , Trifosfato de Adenosina/biossíntese , Animais , Linhagem Celular , Proliferação de Células/efeitos da radiação , DNA/biossíntese , Camundongos , Transdução de Sinais/efeitos da radiação
12.
Biochem Biophys Res Commun ; 482(4): 1154-1159, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27919683

RESUMO

OBJECTIVES: Amelogenins, enamel matrix proteins secreted by ameloblasts, comprise 90% of the developing extracellular enamel matrix. Recent evidence suggests that amelogenins might induce the proliferation of various cells. However, the residues comprising the active site of amelogenin remain unclear. Therefore, this study aimed to examine the effects of a human amelogenin C-terminal peptide (amgCP) on the metabolism of osteoblasts. MATERIALS AND METHODS: Mouse calvarial osteoblastic cells (MC3T3-E1) were cultured and treated with amgCP. Cell proliferation was measured using MTS and BrdU assays. After confluence was reached, the cells were cultured in osteogenic differentiation medium and treated with 0, 100, or 1000 ng/ml amgCP. Cell differentiation activity was examined by real-time PCR, western blotting, and ALP activity. Mineralization was evaluated by Alizarin red staining. RESULTS: Cell numbers of MC3T3-E1 were significantly (P < 0.05) increased by treatment with 1000 ng/ml amgCP as compared to the control group at 4 and 6 days. In addition, the proliferative activity of MC3T3-E1 was significantly enhanced by treatment with 100 or 1000 ng/ml amgCP. The mRNA levels and protein expressions of ALP and BSP were not changed by treatment with amgCP as compared to the non-treated controls on days 7 and 14. The osteogenic differentiation of MC3T3-E1 cells was not affected by treatment with amgCP as compared with untreated controls. CONCLUSION: The C-terminus of amelogenin promotes the proliferation of MC3T3-E1 cells, indicating the possible utility of the C11 peptide in bone-tissue regeneration.


Assuntos
Amelogenina/química , Osteoblastos/metabolismo , Células 3T3 , Animais , Regeneração Óssea , Domínio Catalítico , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Meios de Cultura , Relação Dose-Resposta a Droga , Matriz Extracelular/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Reação em Cadeia da Polimerase em Tempo Real , Sais de Tetrazólio/química , Tiazóis/química , Engenharia Tecidual/métodos
13.
J Periodontol ; 87(7): 820-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27043257

RESUMO

BACKGROUND: Extracts of enamel matrix proteins are used to regenerate periodontal tissue; amelogenin, the most abundant enamel protein, plays an important role in this regeneration. Studies have demonstrated that amelogenin fragments promote tissue regeneration, but the bioactive site of amelogenin remains unclear. This study explores the functional domain of amelogenin by investigating effects of four amelogenin species on cementoblast proliferation. METHODS: Four amelogenin species based on amelogenin cleavage products were investigated: 1) recombinant human full-length amelogenin (rh174); 2) amelogenin cleavage product lacking the C-terminal (rh163); 3) amelogenin cleavage product lacking the N-terminal (rh128); and 4) the C-terminal region of rh174 (C11 peptide), which was synthesized and purified. Human cementoblast-like cell line (HCEM) cells were cultured and treated with rh174, rh163, rh128, or C11 peptide. Cell proliferation was evaluated using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium assay and cell proliferation enzyme-linked immunosorbent assay. Mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) (MAPK-ERK) pathway was examined by Western blot analysis. RESULTS: Proliferation of HCEM cells was significantly enhanced on treatment with rh174, rh128, or C11 peptide. However, rh163 had no effect compared with the untreated control group. Western blot analysis revealed enhanced phosphorylated ERK1/2 signaling after addition of rh128 or C11 peptide and reduced phosphorylated ERK1/2 signaling after blocking with a specific MAPK inhibitor (U0126). CONCLUSION: C-terminal amelogenin cleavage product increased proliferation of HCEM through MAPK-ERK signaling pathway, indicating possible application of C11 peptide for periodontal tissue regeneration.


Assuntos
Amelogenina/farmacologia , Proliferação de Células/efeitos dos fármacos , Cementogênese , Cemento Dentário/citologia , Humanos , Peptídeos , Transdução de Sinais
14.
J Periodontol ; 82(11): 1632-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21486179

RESUMO

BACKGROUND: It is well known that enamel matrix proteins play a crucial role in tooth root formation and amelogenesis. Because amelogenin is a major enamel matrix protein, it is assumed that amelogenin also affects the metabolism of cementum. However, the biologic functions of amelogenin in cementoblasts remain unclear. The purpose of this study is to examine the effect of recombinant human full-length amelogenin (rh174) on the proliferation of cultured human cementoblast-like (HCEM) and human periodontal ligament (HPDL) cells. METHODS: HCEM and HPDL cells were cultured and treated with 100 ng/mL rh174 in the presence or absence of an anti-cluster of differentiation (CD) 63 blocking antibody. Cell proliferation was evaluated using a cell proliferation enzyme-linked immunosorbent assay 5-bromo-2-deoxyuridine kit and quantification of the cell number by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium-inner salt assay. The phosphorylation of extracellular signal-regulated kinases (ERK) 1/2 was measured by enzyme-linked immunosorbent assay and Western blot analysis. RESULTS: The proliferation of HCEM and HPDL cells was enhanced significantly (P <0.05) by treatment with rh174, and inhibited significantly (P <0.05) by the addition of anti-CD63 blocking antibody. In addition, the ratio of phosphorylated ERK1/2 to total ERK1/2 became significantly larger (P <0.05) by treatment with rh174, and was reduced significantly by the addition of anti-CD63 blocking antibody in both HCEM and HPDL cells. CONCLUSION: The results show that rh174 interacts with CD63, and rh174/CD63 interaction activates the ERK1/2 signaling pathway, enhancing the proliferation activities of HCEM and HPDL cells.


Assuntos
Amelogenina/metabolismo , Cemento Dentário/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Ligamento Periodontal/fisiologia , Tetraspanina 30/metabolismo , Linhagem Celular , Proliferação de Células , Cemento Dentário/citologia , Humanos , Ligamento Periodontal/citologia , Proteínas Recombinantes , Transdução de Sinais/fisiologia
15.
Cell Tissue Res ; 342(2): 205-12, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20967466

RESUMO

Amelogenins are enamel matrix proteins that play a crucial role in enamel formation. Recent studies have revealed that amelogenins also have cell signaling properties. Although amelogenins had been described as specific products of ameloblasts, recent research has demonstrated their expression in bone marrow stromal cells. In this study, we examined the effect of recombinant human full-length amelogenin (rh174) on the proliferation of human mesenchymal stem cells (MSCs) derived from bone marrow and characterized the associated changes in intracellular signaling pathways. MSCs were treated with rh174 ranging in dose from 0 to 1,000 ng/ml. Cell proliferative activity was analyzed by bromodeoxyuridine (BrdU) immunoassay. The expression of lysosomal-associated membrane protein 1 (LAMP1), a possible amelogenin receptor, in MSCs was analyzed. Anti-LAMP1 antibody was used to block the binding of rh174 to LAMP1. The MAPK-ERK pathway was examined by Cellular Activation of Signaling ELISA (CASE) kit and western blot analysis. A specific MAPK inhibitor, U0126, was used to block ERK activity. It was shown that rh174 increased the proliferation of MSCs and MAPK-ERK activity. The MSC proliferation and MAPK-ERK activity enhanced by rh174 were reduced by the addition of anti-LAMP1 antibody. Additionally, the increased proliferation of MSCs induced by rh174 was inhibited in the presence of U0126. In conclusion, it is demonstrated that rh174 increases the proliferation of MSCs by interaction with LAMP1 through the MAPK-ERK signaling pathway, indicating the possibility of MSC application to tissue regeneration in the orofacial region.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proteínas do Esmalte Dentário/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células da Medula Óssea/citologia , Butadienos/farmacologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Células-Tronco Mesenquimais/citologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Nitrilas/farmacologia , Proteínas Recombinantes , Regeneração , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA