Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 86(21): 11745-53, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915798

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, a fatal pulmonary disorder with no effective treatment. We found that SARS-CoV spike glycoprotein (S protein), a key molecule for viral entry, binds to calnexin, a molecular chaperone in the endoplasmic reticulum (ER), but not to calreticulin, a homolog of calnexin. Calnexin bound to most truncated mutants of S protein, and S protein bound to all mutants of calnexin. Pseudotyped virus carrying S protein (S-pseudovirus) produced by human cells that were treated with small interfering RNA (siRNA) for calnexin expression (calnexin siRNA-treated cells) showed significantly lower infectivity than S-pseudoviruses produced by untreated and control siRNA-treated cells. S-pseudovirus produced by calnexin siRNA-treated cells contained S protein modified with N-glycan side chains differently from other two S proteins and consisted of two kinds of viral particles: those of normal density with little S protein and those of high density with abundant S protein. Treatment with peptide-N-glycosidase F (PNGase F), which removes all types of N-glycan side chains from glycoproteins, eliminated the infectivity of S-pseudovirus. S-pseudovirus and SARS-CoV produced in the presence of α-glucosidase inhibitors, which disrupt the interaction between calnexin and its substrates, showed significantly lower infectivity than each virus produced in the absence of those compounds. In S-pseudovirus, the incorporation of S protein into viral particles was obviously inhibited. In SARS-CoV, viral production was obviously inhibited. These findings demonstrated that calnexin strictly monitors the maturation of S protein by its direct binding, resulting in conferring infectivity on SARS-CoV.


Assuntos
Calnexina/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Animais , Linhagem Celular , Glicosilação , Humanos , Camundongos , Ligação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Glicoproteína da Espícula de Coronavírus
2.
J Infect Dis ; 203(11): 1574-81, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21592986

RESUMO

BACKGROUND: There is still no effective method to prevent or treat severe acute respiratory syndrome (SARS), which is caused by SARS coronavirus (CoV). In the present study, we evaluated the efficacy of a fully human monoclonal antibody capable of neutralizing SARS-CoV in vitro in a Rhesus macaque model of SARS. METHODS: The antibody 5H10 was obtained by vaccination of KM mice bearing human immunoglobulin genes with Escherichia coli-producing recombinant peptide containing the dominant epitope of the viral spike protein found in convalescent serum samples from patients with SARS. RESULTS: 5H10, which recognized the same epitope that is also a cleavage site critical for the entry of SARS-CoV into host cells, inhibited propagation of the virus and pathological changes found in Rhesus macaques infected with the virus through the nasal route. In addition, we analyzed the mode of action of 5H10, and the results suggested that 5H10 inhibited fusion between the virus envelope and host cell membrane. 5H10 has potential for use in prevention and treatment of SARS if it reemerges. CONCLUSIONS: This study represents a platform to produce fully human antibodies against emerging infectious diseases in a timely and safe manner.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Glicoproteínas de Membrana/imunologia , Síndrome Respiratória Aguda Grave/terapia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Animais Geneticamente Modificados , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Western Blotting , Domínio Catalítico , Fusão Celular , Modelos Animais de Doenças , Células Gigantes/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Glicoproteínas de Membrana/genética , Camundongos , Peptidil Dipeptidase A , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/genética
3.
Proc Natl Acad Sci U S A ; 103(30): 11329-33, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16840555

RESUMO

Although the viral genome is often quite small, it encodes a broad series of proteins. The virus takes advantage of the host-RNA-processing machinery to provide the alternative splicing capability necessary for the expression of this proteomic diversity. Serine-arginine-rich (SR) proteins and the kinases that activate them are central to this alternative splicing machinery. In studies reported here, we use the HIV genome as a model. We show that HIV expression decreases overall SR protein/activity. However, we also show that HIV expression is significantly increased (20-fold) when one of the SR proteins, SRp75 is phosphorylated by SR protein kinase (SRPK)2. Thus, inhibitors of SRPK2 and perhaps of functionally related kinases, such as SRPK1, could be useful antiviral agents. Here, we develop this hypothesis and show that HIV expression down-regulates SR proteins in Flp-In293 cells, resulting in only low-level HIV expression in these cells. However, increasing SRPK2 function up-regulates HIV expression. In addition, we introduce SR protein phosphorylation inhibitor 340 (SRPIN340), which preferentially inhibits SRPK1 and SRPK2 and down-regulates SRp75. Although an isonicotinamide compound, SPRIN340 (or its derivatives) remain to be optimized for better specificity and lower cytotoxicity, we show here that SRPIN340 suppresses propagation of Sindbis virus in plaque assay and variably suppresses HIV production. Thus, we show that SRPK, a well known kinase in the cellular RNA-processing machinery, is used by at least some viruses for propagation and hence suggest that SRPIN340 or its derivatives may be useful for curbing viral diseases.


Assuntos
Regulação Viral da Expressão Gênica , Splicing de RNA , Proteínas de Ligação a RNA/fisiologia , Replicação Viral , Linhagem Celular , Regulação para Baixo , Genoma Viral , HIV/genética , Humanos , Cinética , Fosforilação , Plasmídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sindbis virus/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA