Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138182

RESUMO

Natural calcium phosphates derived from fish wastes are a promising material for biomedical application. However, their sintered ceramics are not fully characterized in terms of mechanical and biological properties. In this study, natural calcium phosphate was synthesized through a thermal calcination process from salmon fish bone wastes. The salmon-derived calcium phosphates (sCaP) were sintered at different temperatures to obtain natural calcium phosphate bioceramics and then were investigated in terms of their microstructure, mechanical properties and biocompatibility. In particular, this work is concerned with the effects of grain size on the relative density and microhardness of the sCaP bioceramics. Ca/P ratio of the sintered sCaP ranged from 1.73 to 1.52 when the sintering temperature was raised from 1000 to 1300 °C. The crystal phase of all the sCaP bioceramics obtained was biphasic and composed of hydroxyapatite (HA) and tricalcium phosphate (TCP). The density and microhardness of the sCaP bioceramics increased in the temperature interval 1000-1100 °C, while at temperatures higher than 1100 °C, these properties were not significantly altered. The highest compressive strength of 116 MPa was recorded for the samples sintered at 1100 °C. In vitro biocompatibility was also examined in the behavior of osteosarcoma (Saos-2) cells, indicating that the sCaP bioceramics had no cytotoxicity effect. Salmon-derived biphasic calcium phosphates (BCP) have the potential to contribute to the development of bone substituted materials.


Assuntos
Materiais Biocompatíveis/química , Neoplasias Ósseas/patologia , Substitutos Ósseos/química , Osso e Ossos/química , Fosfatos de Cálcio/farmacologia , Cerâmica/farmacologia , Osteossarcoma/patologia , Animais , Neoplasias Ósseas/tratamento farmacológico , Fosfatos de Cálcio/química , Proliferação de Células , Cerâmica/química , Humanos , Teste de Materiais , Osteossarcoma/tratamento farmacológico , Salmão , Propriedades de Superfície , Células Tumorais Cultivadas
2.
Carbohydr Polym ; 175: 355-360, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917876

RESUMO

Autograft has been carried out for anterior cruciate ligament (ACL) reconstruction surgery. However, it has negative aspect because patients lose their healthy ligaments from other part. We focus on a chitosan-hydroxyapatite (HAp) composite fiber as a scaffold of ligament regeneration. Chitosan- HAp composite fiber was made by using coagulation method. Chitosan-NaH2PO4 solution was coagulated with coagulation bath including calcium ion to get the mono-fiber and then treated with sodium hydroxide solution to form HAp in fiber matrix. The mechanical property of the fiber was improved by the stretching of the wet one because of the orientation of chitosan molecule and the interaction between chitosan and HAp. Maximum stress was improved with increasing of sodium dihydrogen phosphate until 0.03M. The swelling ratio of the fiber was inhibited by composited with HAp. Additionally, bone-bonding ability was confirmed by SBF soaking tests.

3.
J Biomater Sci Polym Ed ; 20(13): 1861-74, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19793444

RESUMO

Because cartilage has limited potential for self-repair, tissue engineering is expected to replace the present therapies for damaged cartilage, such as total knee arthroplasty. However, scaffolds suitable for cartilage tissue engineering have not been established. We synthesized a novel porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite (pCol-HAp/ChS), containing materials which resemble extracellular matrices in bone and cartilage tissues. In this report, the physical, mechanical and biological properties of the scaffold are compared with those of a collagen sponge (pCol) and pCol incorporating a hydroxyapatite composite (pCol-HAp). HAp/ChS had smaller crystals and a larger total surface area than HAp. SEM images of the three materials showed pCol-HAp/ChS to have the roughest surface. The mechanical properties suggest that pCol-HAp/ChS and pCol/HAp are similar, and superior to pCol. Seeding experiments showed a uniform distribution of mesenchymal stem cells (MSCs) in pCol-HAp/ChS and pCol/HAp. Histochemical staining after 2 weeks of culture revealed pCol-HAp/ChS to be the most chondrogenic. From these results, pCol-HAp/ChS is expected to be a candidate for a scaffold for cartilage tissue engineering in place of collagen sponge.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/citologia , Condroitina/química , Colágeno/química , Durapatita/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cartilagem/crescimento & desenvolvimento , Adesão Celular , Diferenciação Celular , Colágeno/metabolismo , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Propriedades de Superfície
4.
Biomaterials ; 24(17): 2889-94, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12742727

RESUMO

This study is concerned with the blood compatibility of alginic acid layers immobilized on gamma-aminopropyltriethoxysilane (gamma-APS)-grafted stainless-steel (SUS316L). The surfaces were characterized with contact angle measurement and X-ray photoelectron spectroscopy (XPS). The blood compatibility was evaluated in terms of platelet adhesion and blood clotting time. An in vitro platelet adhesion assay indicated that only a small number of platelets adhered to substrate surfaces modified with gamma-APS and subsequently with alginic acid. Moreover, alginic-acid-immobilized SUS316L substrates had little effect on the blood clotting time. This indicated that alginic-acid-immobilized SUS316L substrates do not adsorb some blood-clotting proteins or factors, or stimulate them.


Assuntos
Alginatos/química , Fatores de Coagulação Sanguínea/metabolismo , Sangue , Materiais Revestidos Biocompatíveis/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Plasma/metabolismo , Adesividade Plaquetária/fisiologia , Aço Inoxidável/química , Biotecnologia/métodos , Células Cultivadas , Materiais Revestidos Biocompatíveis/síntese química , Fibrinogênio/metabolismo , Humanos , Teste de Materiais , Ativação Plaquetária , Próteses e Implantes , Protrombina/metabolismo , Propriedades de Superfície , Tromboplastina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA