Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Sci ; 155(2): 52-62, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677786

RESUMO

The ubiquitin-proteasome system (UPS) is a major proteolytic system that plays an important role in the regulation of various cell processes, such as cell cycle, stress response, and transcriptional regulation, especially in neurons, and dysfunction of UPS is considered to be a cause of neuronal cell death in neurodegenerative diseases. However, the mechanism of neuronal cell death caused by UPS dysfunction has not yet been fully elucidated. In this study, we investigated the mechanism of neuronal cell death induced by proteasome inhibitors using human neuroblastoma SH-SY5Y cells. Z-Leu-D-Leu-Leu-al (MG132), a proteasome inhibitor, induced apoptosis in SH-SY5Y cells in a concentration- and time-dependent manner. Antioxidants N-acetylcysteine and EUK-8 attenuated MG132-induced apoptosis. Apocynin and diphenyleneiodonium, inhibitors of NADPH oxidase (NOX), an enzyme that produces superoxide anions, also attenuated MG132-induced apoptosis. It was also found that MG132 treatment increased the expression of NOX5, a NOX family member, and that siRNA-mediated silencing of NOX5 and BAPTA-AM, which inhibits NOX5 by chelating calcium, suppressed MG132-induced apoptosis and production of reactive oxygen species in SH-SY5Y cells. These results suggest that MG132 induces apoptosis in SH-SY5Y cells through the production of superoxide anion by NOX5.


Assuntos
Apoptose , Leupeptinas , NADPH Oxidase 5 , NADPH Oxidases , Neuroblastoma , Inibidores de Proteassoma , Superóxidos , Humanos , Apoptose/efeitos dos fármacos , Apoptose/genética , Inibidores de Proteassoma/farmacologia , Superóxidos/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Leupeptinas/farmacologia , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Acetilcisteína/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
2.
Neurochem Res ; 48(12): 3571-3584, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37556038

RESUMO

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with selective degeneration of motor neurons. It has been reported that an increase in the levels of inflammatory cytokines and glial cells such as reactive astrocytes is closely involved in the pathological progression of ALS. Recently, the levels of neuropathic cytotoxic (A1) astrocytes among reactive astrocytes have reportedly increased in the central nervous system of ALS mice, which induce motor neuron degeneration through the production of inflammatory cytokines and secretion of neuropathic factors. Hence, elucidating the induction mechanism of A1 astrocytes in ALS is important to understand the mechanism of disease progression in ALS. In this study, we observed that the expression of peroxiredoxin 6 (PRDX6), a member of the peroxiredoxin family, was markedly upregulated in astrocytes of the lumbar spinal cord of SOD1G93A mice model for ALS. Additionally, when PRDX6 was transiently transfected into the mouse astrocyte cell line C8-D1A and human astrocytoma cell line U-251 MG, the mRNA expression of complement C3 (a marker for A1 astrocyte phenotype) and inflammatory cytokines was increased. Furthermore, the mRNA expression of C3 and inflammatory cytokine was increased in C8-D1A and U-251 MG cells stably expressing PRDX6, and the increased mRNA expression was significantly suppressed by MJ33 (lithium[1-hexadecoxy-3-(2,2,2-trifluoroethoxy) propan-2-yl] methyl phosphate), an inhibitor of the phospholipase A2 activity of PRDX6. Our results suggest that the expression of PRDX6 in astrocytes plays an important role in the induction of A1 astrocytes and expression of inflammatory cytokines in the ALS mice model.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Camundongos , Humanos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Doenças Neurodegenerativas/metabolismo , Camundongos Transgênicos , Medula Espinal/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Síndromes Neurotóxicas/metabolismo , RNA Mensageiro/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase/metabolismo
3.
J Pharmacol Sci ; 148(1): 41-50, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924128

RESUMO

We previously reported that dopamine (DA) attenuated lipopolysaccharide (LPS)-induced expression of proinflammatory cytokines through the formation of DA quinone (DAQ) in murine microglial cell line BV-2 and primary murine microglial cells. To reveal whether DA inhibits the expression of proinflammatory cytokines of microglial cells through the formation of DAQ in the central nervous system (CNS), in this study, we examined the effect of DAQ on LPS-induced mRNA expression of proinflammatory cytokines in C57BL/6 mouse brain under two experimental conditions: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration and l-dopa/carbidopa administration. Acute MPTP administration reduced the number of tyrosine hydroxylase-positive cells in the substantia nigra, and decreased the level of quinoprotein, an indicator of DAQ formation, in the striatum. Real-time RT-PCR analysis revealed that intraperitoneal administration of LPS increased the mRNA levels of proinflammatory cytokines, including tumor-necrosis factor-α and interleukin-1ß, in the striatum. These increases were enhanced in MPTP-treated mice. On the other hand, l-dopa/carbidopa administration increased the level of quinoprotein, attenuated the LPS-induced mRNA expression of proinflammatory cytokines, and reduced the LPS-induced increase in the number of microglial cells in the striatum. These results suggest that DA attenuate the expression of proinflammatory cytokines in microglia through the formation of DAQ in the CNS.


Assuntos
Corpo Estriado/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dopamina/análogos & derivados , Dopamina/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Linhagem Celular , Depressão Química , Dopamina/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
J Neurosci Res ; 99(2): 621-637, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32954502

RESUMO

Oxidative stress has been implicated in a variety of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. Astrocytes play a significant role in maintaining survival of neurons by supplying antioxidants such as glutathione (GSH) to neurons. Recently, we found that noradrenaline increased the intracellular GSH concentration in astrocytes via ß3 -adrenoceptor stimulation. These observations suggest that noradrenaline protects neurons from oxidative stress-induced death by increasing the supply of GSH from astrocytes to neurons via the stimulation of ß3 -adrenoceptor in astrocytes. In the present study, we examined the protective effect of noradrenaline against H2 O2 -induced neurotoxicity using two different mixed cultures: the mixed culture of human astrocytoma U-251 MG cells and human neuroblastoma SH-SY5Y cells, and the mouse primary cerebrum mixed culture of neurons and astrocytes. H2 O2 -induced neuronal cell death was significantly attenuated by pretreatment with noradrenaline in both mixed cultures but not in single culture of SH-SY5Y cells or in mouse cerebrum neuron-rich culture. The neuroprotective effect of noradrenaline was inhibited by SR59230A, a selective ß3 -adrenoceptor antagonist, and CL316243, a selective ß3 -adrenoceptor agonist, mimicked the neuroprotective effect of noradrenaline. DL-buthionine-[S,R]-sulfoximine, a GSH synthesis inhibitor, negated the neuroprotective effect of noradrenaline in both mixed cultures. MK571, which inhibits the export of GSH from astrocytes mediated by multidrug resistance-associated protein 1, also prevented the neuroprotective effect of noradrenaline. These results suggest that noradrenaline protects neurons against H2 O2 -induced death by increasing the supply of GSH from astrocytes via ß3 -adrenoceptor stimulation.


Assuntos
Astrócitos/efeitos dos fármacos , Glutationa/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Norepinefrina/farmacologia , Receptores Adrenérgicos beta 3/fisiologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Antagonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Astrócitos/metabolismo , Astrocitoma , Encéfalo/citologia , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Dioxóis/farmacologia , Humanos , Peróxido de Hidrogênio/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma , Estresse Oxidativo , Propanolaminas/farmacologia , Propionatos/farmacologia , Quinolinas/farmacologia
5.
Neurochem Res ; 45(4): 752-759, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31894462

RESUMO

Glutamate excitotoxicity via N-methyl-D-aspartate (NMDA) receptors is thought to be a factor involved in the loss of retinal neuronal cells, including retinal ganglion cells, in retinal diseases such as diabetic retinopathy and acute angle closure glaucoma. Herein we report the protective effect of systemic administration of ML233, an apelin receptor agonist, against retinal neuronal cell death induced by the intravitreal injection of NMDA into mice. Intraperitoneal administration of ML233 prevented the NMDA-induced reduction in the amplitude of scotopic threshold responses (STR), which mainly reflect the activity of the retinal ganglion cells. Immunohistochemical staining showed that ML233 inhibited the NMDA-induced loss of retinal ganglion cells and amacrine cells. In addition, ML233 suppressed the breakdown of spectrin αII, a neuronal cytoskeleton protein cleaved by calpain activation, in the retina after intravitreal injection of NMDA. Intraperitoneal administration of ML233 increased the phosphorylation of Akt, a potent anti-apoptotic protein in neurons, in the retina. Furthermore, oral administration of ML233 protected against the decrease in the STR amplitudes and the loss of retinal ganglion cells caused by NMDA. These results suggest that systemic administration of ML233 protected retinal neurons from NMDA receptor-mediated excitotoxicity and that drugs activating the apelin receptor may be a new candidate for preventing the progression of these retinal diseases.


Assuntos
Receptores de Apelina/agonistas , Iminas/farmacologia , Mesilatos/farmacologia , N-Metilaspartato/toxicidade , Doenças Retinianas/prevenção & controle , Neurônios Retinianos/efeitos dos fármacos , Administração Oral , Animais , Iminas/administração & dosagem , Injeções Intraperitoneais , Injeções Intravítreas , Masculino , Mesilatos/administração & dosagem , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Retinianas/metabolismo , Neurônios Retinianos/metabolismo
6.
Eur J Pharmacol ; 866: 172826, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31790652

RESUMO

Many reports have indicated that dopamine has immunomodulatory effects on peripheral immune cells. The purpose of this study was to reveal the immunomodulatory effect of dopamine on the expression of proinflammatory cytokines in microglial cells, which are the immune cells of the central nervous system. In murine microglial cell line BV-2 cells, pretreatment with dopamine for 24 h attenuated the lipopolysaccharide (LPS)-induced expression of proinflammatory cytokines such as tumor-necrosis factor-α, interleukin-1ß, and interleukin-6. Neither (5R)-8-chloro-3-methyl-5-phenyl-1,2,4,5-tetrahydro-3-benzazepin-7-ol; hydrochloride (SCH-23390) nor sulpiride, which are dopamine D1-like and D2-like receptor antagonists, respectively, affected the attenuation of LPS-induced expression of cytokines by dopamine. In addition, pretreatment with neither (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY208-243) nor bromocriptine, dopamine D1-like and D2-like receptor agonists, respectively, was effective in doing so. However, N-acetylcysteine (NAC), which inhibits dopamine oxidation to dopamine quinone, did inhibit this attenuated expression. Dopamine increased the level of quinoproteins, and this increase was inhibited by NAC. Western blot and immunocytochemical analyses revealed that dopamine inhibited LPS-induced nuclear translocation of nuclear factor-kappa B (NF-κB) p65. Dopamine also attenuated the expression of cytokines and the nuclear translocation of NF-κB p65 induced by LPS in mouse microglial cells in primary culture. These results suggest that dopamine attenuated LPS-induced expression of cytokines by inhibiting the nuclear translocation of NF-κB p65 through the formation of dopamine quinone in microglial cells.


Assuntos
Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citocinas/metabolismo , Dopamina/análogos & derivados , Dopamina/farmacologia , Microglia/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Linhagem Celular , Dopamina/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/citologia , Microglia/metabolismo
7.
Sci Rep ; 7(1): 15062, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118394

RESUMO

Pathological retinal angiogenesis is caused by the progression of ischemic retinal diseases and can result in retinal detachment and irreversible blindness. This neovascularization is initiated from the retinal veins and their associated capillaries and involves the overgrowth of vascular endothelial cells. Since expression of the apelin receptor (APJ) is restricted to the veins and proliferative endothelial cells during physiological retinal angiogenesis, in the present study, we investigated the effect of APJ inhibition on pathological retinal angiogenesis in a mouse model of oxygen-induced retinopathy (OIR). In vitro experiments revealed that ML221, an APJ antagonist, suppressed cultured-endothelial cell proliferation in a dose-dependent manner. Intraperitoneal administration of ML221 inhibited pathological angiogenesis but enhanced the recovery of normal vessels into the ischemic regions in the retina of the OIR model mice. ML221 did not affect the expression levels of vascular endothelial growth factor (VEGF) and its receptor (VEGFR2) in the retina. APJ was highly expressed in the endothelial cells within abnormal vessels but was only detected in small amounts in morphologically normal vessels. These results suggest that APJ inhibitors selectively prevent pathological retinal angiogenesis and that the drugs targeting APJ may be new a candidate for treating ischemic retinopathy.


Assuntos
Receptores de Apelina/antagonistas & inibidores , Nitrobenzoatos/farmacologia , Piranos/farmacologia , Doenças Retinianas/prevenção & controle , Neovascularização Retiniana/prevenção & controle , Animais , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Isquemia/genética , Isquemia/metabolismo , Isquemia/prevenção & controle , Camundongos , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
J Pharmacol Sci ; 133(1): 34-41, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28087150

RESUMO

Glutamate excitotoxicity mediated by N-methyl-d-aspartate (NMDA) receptors is an important cause of retinal ganglion cell death in glaucoma. To elucidate whether apelin protects against retinal neuronal cell death, we examined protective effects of exogenous and endogenous apelin on neuronal cell death induced by intravitreal injection of NMDA in the retinas of mice. An intravitreal injection of NMDA induced neuronal cell death in both the retinal ganglion cell layer and inner nuclear layer, and reduced the amplitudes of scotopic threshold response (STR) in electroretinography studies. Both cell death and STR amplitudes decrease induced by NMDA were prevented by a co-injection of [Pyr1]-apelin-13, and were facilitated by apelin deficiency. The neuroprotective effects of [Pyr1]-apelin-13 were blocked by an apelin receptor APJ antagonist, and by inhibitors of Akt and extracellular signal-regulated kinase 1/2 signaling pathways. Additionally, an intravitreal injection of tumor necrosis factor-α (TNF-α) neutralizing antibody prevented NMDA-induced retinal neuronal cell death, and exogenous and endogenous apelin suppressed NMDA-induced upregulation of TNF-α in the retina. These results suggest that apelin protects neuronal cells against NMDA-induced death via an APJ receptor in the retina, and that apelin may have beneficial effects in the treatment of glaucoma.


Assuntos
Morte Celular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , N-Metilaspartato/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Receptores de Apelina , Injeções Intravítreas , Masculino , Camundongos , N-Metilaspartato/administração & dosagem , N-Metilaspartato/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Visão Noturna/efeitos dos fármacos , Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
9.
Transpl Int ; 29(9): 1039-50, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27306931

RESUMO

Cell death cluster in transplanted cells remains a critical obstacle for regeneration strategies. This study describes a novel platform for cell transplantation (CellSaic) consisting of human mesenchymal stem cells (hMSCs) and petaloid pieces of recombinant peptide (RCP), which can prevent cell death by arranging the cells in a mosaic. When hMSC CellSaics were subcutaneously implanted into NOD/SCID mice, hMSC CellSaics prevented cell death and accelerated angiogenesis in the graft, compared to the findings obtained on solely implanting cell spheroids. Additionally, we examined the application of CellSaic for subcutaneous cotransplantation of 200 rat islets with 2 × 10(5) hMSCs into diabetic mice. As the results of blood glucose levels at 1 m, the islet-only group was 398 ± 30 mg/dl and the islets with hMSCs group were 180 ± 65 mg/dl. On the other hand, the islets with hMSCs CellSaic group showed 129 ± 15 mg/dl and significantly improved glucose tolerance (P < 0.05). Additionally, we showed that the surface texture of the RCP petaloid pieces played an important role in graft survival and angiogenesis. It is anticipated that CellSaic will be used as a new platform for cell transplantation and tissue regeneration.


Assuntos
Transplante das Ilhotas Pancreáticas/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Proteínas Recombinantes/uso terapêutico , Animais , Sobrevivência Celular , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Sobrevivência de Enxerto , Humanos , Ilhotas Pancreáticas/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Fisiológica , Peptídeos/uso terapêutico , Regeneração
10.
J Pharmacol Sci ; 130(2): 51-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26908040

RESUMO

Dopamine (DA) has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208-243) and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ), accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.


Assuntos
Dopamina/análogos & derivados , Dopamina/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Microglia/metabolismo , Óxido Nítrico/metabolismo , Acetilcisteína/farmacologia , Animais , Células Cultivadas , Dopamina/metabolismo , Antagonistas de Dopamina , Sinergismo Farmacológico , Lipopolissacarídeos/farmacologia , Camundongos , Monofenol Mono-Oxigenase/farmacologia , Oxirredução/efeitos dos fármacos
11.
Eur J Pharmacol ; 772: 51-61, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26724392

RESUMO

Glutathione (GSH) plays a critical role in protecting cells from oxidative damage. Since neurons rely on the supply of GSH from astrocytes to maintain optimal intracellular GSH concentrations, the GSH concentration of astrocytes is important for the survival of neighboring neurons against oxidative stress. The neurotransmitter noradrenaline is known to modulate the functions of astrocytes and has been suggested to have neuroprotective properties in neurodegenerative diseases. To elucidate the mechanisms underlying the neuroprotective properties of noradrenaline, in this study, we investigated the effect of noradrenaline on the concentrations of intracellular GSH in human U-251 malignant glioma (MG; astrocytoma) cells. Treatment of the cells with noradrenaline for 24h concentration-dependently increased their intracellular GSH concentration. This increase was inhibited by a non-selective ß-adrenoceptor antagonist propranolol and by a selective ß3-adrenoceptor antagonist SR59230A, but not by a non-selective α-adrenoceptor antagonist phenoxybenzamine, or by a selective ß1-adrenoceptor antagonist atenolol or by a selective ß2-adrenoceptor antagonist butoxamine. In addition, the selective ß3-adrenoceptor agonist CL316243 increased the intracellular GSH in U-251 MG cells. Treatment of the cells with noradrenaline (10µM) for 24h increased the protein level of the catalytic subunit of glutamate-cysteine ligase (GCLc), the rate-limiting enzyme of GSH synthesis; and this increase was inhibited by SR59230A. These results thus suggest that noradrenaline increased the GSH concentration in astrocytes by inducing GCLc protein in them via ß3-adrenoceptor stimulation.


Assuntos
Astrocitoma/patologia , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Norepinefrina/farmacologia , Receptores Adrenérgicos beta 3/metabolismo , Antagonistas de Receptores Adrenérgicos beta 3/farmacologia , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos
12.
Invest Ophthalmol Vis Sci ; 54(6): 4321-9, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23722395

RESUMO

PURPOSE: To investigate the role of the apelin-APJ system in the development of choroidal neovascularization (CNV). METHODS: Experimental CNV was induced by laser photocoagulation in wild-type (WT), apelin-deficient (apelin-KO), and apelin receptor (APJ)-deficient (APJ-KO) mice. The gene expression levels of angiogenic or inflammatory factors were determined by quantitative real-time reverse transcription-polymerase chain reaction. APJ expression in CNV lesions was examined by immunohistochemistry. The sizes of the CNV lesions in the three mouse models were measured and compared histologically using isolectin B4 staining. Macrophage recruitment was measured by flow cytometric analysis. Proliferation of endothelial cells was determined using the alamar Blue assay. RESULTS: Laser photocoagulation significantly increased expression of apelin and APJ in the retina-retinal pigment epithelium (RPE) complex. APJ immunoreactive cells were found in the CNV lesions and colocalized with platelet endothelial cell adhesion molecule-1, an endothelial cell marker. The sizes of the CNV lesions in apelin-KO or APJ-KO mice decreased significantly compared with those in the WT mice. Macrophages in the RPE complex of the apelin-KO mice, in which gene expression of the inflammatory factors was almost equal to that in WT mice, were recruited as a result of laser photocoagulation to the same degree as in WT mice. In addition, apelin small and interfering RNA (siRNA) suppressed proliferation of endothelial cells independently of vascular endothelial growth factor (VEGF) receptor 2 signaling, while VEGF increased expression of apelin and APJ in human umbilical vein endothelial cells. CONCLUSIONS: The results suggested that the apelin-APJ system contributes to CNV development partially independent of the VEGF pathway.


Assuntos
Neovascularização de Coroide/prevenção & controle , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Adipocinas , Indutores da Angiogênese/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Apelina , Receptores de Apelina , Proliferação de Células , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Citocinas/genética , Citocinas/metabolismo , Endotélio Vascular/patologia , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Regulação da Expressão Gênica/fisiologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Mediadores da Inflamação/metabolismo , Fotocoagulação a Laser , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Angiogenesis ; 16(3): 723-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640575

RESUMO

The recruitment of mural cells such as pericytes to patent vessels with an endothelial lumen is a key factor for the maturation of blood vessels and the prevention of hemorrhage in pathological angiogenesis. To date, our understanding of the specific trigger underlying the transition from cell growth to the maturation phase remains incomplete. Since rapid endothelial cell growth causes pericyte loss, we hypothesized that suppression of endothelial growth factors would both promote pericyte recruitment, in addition to inhibiting pathological angiogenesis. Here, we demonstrate that targeted knockdown of apelin in endothelial cells using siRNA induced the expression of monocyte chemoattractant protein-1 (MCP-1) through activation of Smad3, via suppression of the PI3K/Akt pathway. The conditioned medium of endothelial cells treated with apelin siRNA enhanced the migration of vascular smooth muscle cells, through MCP-1 and its receptor pathway. Moreover, in vivo delivery of siRNA targeting apelin, which causes exuberant endothelial cell proliferation and pathological angiogenesis through its receptor APJ, led to increased pericyte coverage and suppressed pathological angiogenesis in an oxygen-induced retinopathy model. These data demonstrate that apelin is not only a potent endothelial growth factor, but also restricts pericyte recruitment, establishing a new connection between endothelial cell proliferation signaling and a trigger of mural recruitment.


Assuntos
Quimiocina CCL2/metabolismo , Células Endoteliais/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Patológica/fisiopatologia , Vasos Retinianos/fisiopatologia , Adipocinas , Análise de Variância , Animais , Apelina , Receptores de Apelina , Western Blotting , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Músculo Liso Vascular/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad3/metabolismo , Células Tumorais Cultivadas
14.
Arterioscler Thromb Vasc Biol ; 30(11): 2182-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20705920

RESUMO

OBJECTIVE: To investigate the role of endogenous apelin in pathological retinal angiogenesis. METHODS AND RESULTS: The progression of ischemic retinal diseases, such as diabetic retinopathy, is closely associated with pathological retinal angiogenesis, mainly induced by vascular endothelial growth factor (VEGF) and erythropoietin. Although antiangiogenic therapies using anti-VEGF drugs are effective in treating retinal neovascularization, they show a transient efficacy and cause general adverse effects. New therapeutic target molecules are needed to resolve these issues. It was recently demonstrated that the apelin/APJ system, a newly deorphanized G protein-coupled receptor system, is involved in physiological retinal vascularization. Retinal angiography and mRNA expression were examined during hypoxia-induced retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Compared with age-matched control mice, retinal apelin expression was dramatically increased during the hypoxic phase in oxygen-induced retinopathy model mice. APJ was colocalized in proliferative cells, which were probably endothelial cells of the ectopic vessels in the vitreous body. Apelin deficiency hardly induced hypoxia-induced retinal angiogenesis despite the upregulation of VEGF and erythropoietin mRNA in oxygen-induced retinopathy model mice. Apelin small and interfering RNA suppressed the proliferation of endothelial cells independent of the VEGF/VEGF receptor 2 signaling pathway. CONCLUSIONS: These results suggest that apelin is a prerequisite factor for hypoxia-induced retinal angiogenesis.


Assuntos
Proteínas de Transporte/fisiologia , Hipóxia/complicações , Neovascularização Retiniana/fisiopatologia , Adipocinas , Animais , Apelina , Proteínas de Transporte/efeitos adversos , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/fisiopatologia , Neovascularização Retiniana/etiologia
15.
Neurochem Res ; 31(5): 657-64, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16770736

RESUMO

Endoplasmic reticulum (ER) dysfunction is known to activate the unfolded protein response, which is characterized by the activation of two divergent processes, i.e., suppression of the initiation process in global protein synthesis and expression of glucose-regulated protein 78 (Bip/Grp78) and the C/EBP homologous transcription factor CHOP/Gadd153. In this study, we examined the expression of CHOP/Gadd153 and Bip/Grp78 in human neuroblastoma SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA), which is used to prepare animal models of Parkinson's disease. 6-OHDA treatment induced cell death, in a concentration-dependent manner, which was inhibited by co-treatment with an antioxidant N-acetylcysteine. 6-OHDA was also effective in decreasing proteasome activity and in increasing the levels of high molecular ubiquitin-conjugated proteins. Furthermore, 6-OHDA induced a marked increase in the expression of both CHOP/Gadd153 and Bip/Grp78. This increase was prevented by N-acetylcysteine. Taken together, our data indicate that ER dysfunction is at least in part involved in the mechanisms underlying cell death induced by 6-OHDA in SH-SY5Y cells.


Assuntos
Morte Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Oxidopamina/farmacologia , Acetilcisteína/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Adrenérgicos/farmacologia , Animais , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Sequestradores de Radicais Livres/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Fator de Transcrição CHOP/metabolismo , Tunicamicina/metabolismo , Ubiquitina/metabolismo
16.
J Pharmacol Sci ; 101(2): 126-34, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16778361

RESUMO

Nitric oxide (NO) induces apoptosis in various cells lines, while activation of the NO/cGMP signaling pathway prevents apoptosis induced by diverse stimuli, including NO. Here, we report the cytoprotective mechanisms of the NO/cGMP signaling pathway against NO-induced apoptosis in a mouse macrophage-like cell line, RAW264. Treatment with sodium nitroprusside (SNP), an NO donor, at a high-toxic concentration (4 mM) stimulated the N-terminal conformational change of Bax and its translocation to mitochondria followed by cytochrome c release and nuclear fragmentation in RAW264 cells. These changes of Bax were attenuated by pretreatment with SNP at a low-nontoxic concentration (100 microM) or dibutyryl cGMP (DBcGMP), a cell-permeable cGMP analogue. SB203580, a p38 mitogen-activated protein kinase (MAP kinase) inhibitor, blocked the effects of 4 mM SNP on Bax translocation and cell viability. Treatment with 4 mM SNP activated p38 MAP kinase and this effect was prevented by pretreatment with 100 microM SNP or DBcGMP. These findings suggest that the NO/cGMP signaling pathway inhibits NO-induced apoptosis of macrophages by suppressing the p38 MAP kinase activation, which results in N-terminal conformational change of Bax and its translocation to mitochondria.


Assuntos
Apoptose/fisiologia , GMP Cíclico/metabolismo , Macrófagos/metabolismo , Óxido Nítrico/fisiologia , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Ativação Enzimática , Macrófagos/citologia , Macrófagos/fisiologia , Camundongos , Doadores de Óxido Nítrico/farmacologia
17.
J Immunol ; 176(8): 4675-81, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16585560

RESUMO

We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.


Assuntos
Apoptose/efeitos dos fármacos , Catalase/biossíntese , Peróxido de Hidrogênio/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Animais , Linhagem Celular , GMP Cíclico/metabolismo , Macrófagos/citologia , Camundongos , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Compostos Nitrosos/farmacologia , Transdução de Sinais
18.
J Neurochem ; 90(4): 904-12, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15287896

RESUMO

Focal adhesion kinase (FAK), a non-receptor type tyrosine kinase, is involved in the G1/S phase cell cycle transition of astrocytes induced by endothelin-1 (ET-1). In this study, the roles of FAK in the expression of cyclin D1 or D3, which are pivotal in G1/S phase transition, were examined in cultured astrocytes. Accompanied with increases in bromodeoxyuridine (BrdU) incorporation, ET-1 (100 nm) increased the numbers of cyclin D1- and D3-positive astrocytes. PD98059 (a MEK inhibitor) and PP-2 (a Src kinase inhibitor) inhibited ET-induced cyclin D1 expression and BrdU incorporation without affecting cyclin D3 expression. In contrast, cytochalasin D, lovastatin (a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor) and Y-27632 (a rho-kinase inhibitor) prevented both cyclin D3 expression and BrdU incorporation. FAK phosphorylation by ET-1 was inhibited by cytochalasin D, lovastatin and Y-27632, but not by PD98059 or PP-2. Transfection with wild-type FAK increased expression of cyclin D3 in astrocytes, while that of cyclin D1 was not affected. Dominant-negative FAK mutants prevented an ET-induced increase in cyclin D3 expression, but not D1. These results suggest that activation of FAK causes cyclin D3 expression in cultured astrocytes, which would underlie the FAK-mediated astrocytic G1/S phase transition by ET-1.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Ciclinas/biossíntese , Endotelina-1/farmacologia , Proteínas Tirosina Quinases/metabolismo , Animais , Astrócitos/citologia , Células Cultivadas , Ciclina D1/biossíntese , Ciclina D3 , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Fase G1/fisiologia , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/genética , Ratos , Ratos Wistar , Fase S/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA