Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 326: 18-24, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25291031

RESUMO

We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (ß and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells.


Assuntos
Neoplasias da Mama/enzimologia , Dronabinol/farmacologia , Oxigenases de Função Mista/biossíntese , PPAR alfa/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Relação Dose-Resposta a Droga , Indução Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/farmacologia , Oxigenases de Função Mista/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção , Regulação para Cima
2.
J Toxicol Sci ; 39(5): 711-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25242400

RESUMO

Metastases are known to be responsible for approximately 90% of breast cancer-related deaths. Cyclooxygenase-2 (COX-2) is involved not only in inflammatory processes, but also in the metastasis of cancer cells; it is expressed in 40% of human invasive breast cancers. To comprehensively analyze the effects of cannabidiolic acid (CBDA), a selective COX-2 inhibitor found in the fiber-type cannabis plant (Takeda et al., 2008), on COX-2 expression and the genes involved in metastasis, we performed a DNA microarray analysis of human breast cancer MDA-MB-231 cells, which are invasive breast cancer cells that express high levels of COX-2, treated with CBDA for 48 hr at 25 µM. The results obtained revealed that COX-2 and Id-1, a positive regulator of breast cancer metastasis, were down-regulated (0.19-fold and 0.52-fold, respectively), while SHARP1 (or BHLHE41), a suppressor of breast cancer metastasis, was up-regulated (1.72-fold) and CHIP (or STUB1) was unaffected (1.03-fold). These changes were confirmed by real-time RT-PCR analyses. Taken together, the results obtained here demonstrated that i) CBDA had dual inhibitory effects on COX-2 through down-regulation and enzyme inhibition, and ii) CBDA may possess the ability to suppress genes that are positively involved in the metastasis of cancer cells in vitro.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Canabinoides/farmacologia , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Antineoplásicos Fitogênicos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias da Mama/patologia , Cannabis , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Neoplásica , Reação em Cadeia da Polimerase em Tempo Real , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos
3.
Plant Cell Environ ; 37(9): 2201-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24506786

RESUMO

Controversies regarding the function of guard cell chloroplasts and the contribution of mesophyll in stomatal movements have persisted for several decades. Here, by comparing the stomatal opening of guard cells with (crl-ch) or without chloroplasts (crl-no ch) in one epidermis of crl (crumpled leaf) mutant in Arabidopsis, we showed that stomatal apertures of crl-no ch were approximately 65-70% those of crl-ch and approximately 50-60% those of wild type. The weakened stomatal opening in crl-no ch could be partially restored by imposing lower extracellular pH. Correspondingly, the external pH changes and K(+) accumulations following fusicoccin (FC) treatment were greatly reduced in the guard cells of crl-no ch compared with crl-ch and wild type. Determination of the relative ATP levels in individual cells showed that crl-no ch guard cells contained considerably lower levels of ATP than did crl-ch and wild type after 2 h of white light illumination. In addition, guard cell ATP levels were lower in the epidermis than in leaves, which is consistent with the observed weaker stomatal opening response to white light in the epidermis than in leaves. These results provide evidence that both guard cell chloroplasts and mesophyll contribute to the ATP source for H(+) extrusion by guard cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Células do Mesofilo/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/efeitos da radiação , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Espaço Extracelular/metabolismo , Glicosídeos/farmacologia , Concentração de Íons de Hidrogênio , Luz , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/efeitos da radiação , Potássio/metabolismo
4.
J Plant Res ; 121(4): 425-33, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18463947

RESUMO

When gene 6b on the T-DNA of Agrobacterium tumefaciens is transferred to plant cells, its expression causes plant hormone-independent division of cells in in vitro culture and abnormal cell growth, which induces various morphological defects in 6b-expressing transgenic Arabidopsis thaliana and Nicotiana tabacum plants. Protein 6b localizes to the nuclei, a requirement for the abnormal cell growth, and binds to a tobacco nuclear protein called NtSIP1 and histone H3. In addition, 6b has histone chaperone-like activity in vitro and affects the expression of various plant genes, including cell division-related genes and meristem-related class 1 KNOX homeobox genes, in transgenic Arabidopsis. Here, we report that 6b binds to a newly identified protein NtSIP2, whose amino acid sequence is predicted to be 30% identical and 51% similar to that of the TNP1 protein encoded by the transposon Tam1 of Antirrhinum majus. Immunolocalization analysis using anti-T7 antibodies showed nucleolar localization of most of the T7 epitope-tagged NtSIP2 proteins. A similar analysis with the T7-tagged 6b protein also showed subnucleolar as well as nuclear localization of the 6b protein. These results suggest the involvement of 6b along with NtSIP2 in certain molecular processes in the nucleolus as well as the nucleoplasm.


Assuntos
Agrobacterium tumefaciens/metabolismo , Antirrhinum/metabolismo , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis/genética , Nicotiana/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Antirrhinum/genética , Proteínas de Bactérias/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes Bacterianos , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA