Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Viruses ; 15(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37632103

RESUMO

OTUD6A is a deubiquitinase that plays crucial roles in various human diseases. However, the precise regulatory mechanism of OTUD6A remains unclear. In this study, we found that OTUD6A significantly inhibited the production of type I interferon. Consistently, peritoneal macrophages and bone marrow-derived macrophages from Otud6a-/- mice produced more type I interferon after virus infection compared to cells from WT mice. Otud6a-/-- mice also exhibited increased resistance to lethal HSV-1 and VSV infections, as well as LPS attacks due to decreased inflammatory responses. Mechanistically, mass spectrometry results revealed that UBC13 was an OTUD6A-interacting protein, and the interaction was significantly enhanced after HSV-1 stimulation. Taken together, our findings suggest that OTUD6A plays a crucial role in the innate immune response and may serve as a potential therapeutic target for infectious disease.


Assuntos
Herpesvirus Humano 1 , Interferon Tipo I , Humanos , Animais , Camundongos , Imunidade Inata , Macrófagos , Enzimas Desubiquitinantes
2.
BMC Med ; 21(1): 147, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069550

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are anti-cancer therapeutics often prescribed for long-term treatment. Many of these treatments cause cardiotoxicity with limited cure. We aim to clarify molecular mechanisms of TKI-induced cardiotoxicity so as to find potential targets for treating the adverse cardiac complications. METHODS: Eight TKIs with different levels of cardiotoxicity reported are selected. Phenotypic and transcriptomic responses of human cardiomyocytes to TKIs at varying doses and times are profiled and analyzed. Stress responses and signaling pathways that modulate cardiotoxicity induced by three TKIs are validated in cardiomyocytes and rat hearts. RESULTS: Toxicity rank of the eight TKIs determined by measuring their effects on cell viability, contractility, and respiration is largely consistent with that derived from database or literature, indicating that human cardiomyocytes are a good cellular model for studying cardiotoxicity. When transcriptomes are measured for selected TKI treatments with different levels of toxicity in human cardiomyocytes, the data are classified into 7 clusters with mainly single-drug clusters. Drug-specific effects on the transcriptome dominate over dose-, time- or toxicity-dependent effects. Two clusters with three TKIs (afatinib, ponatinib, and sorafenib) have the top enriched pathway as the endoplasmic reticulum stress (ERS). All three TKIs induce ERS in rat primary cardiomyocytes and ponatinib activates the IRE1α-XBP1s axis downstream of ERS in the hearts of rats underwent a 7-day course of drug treatment. To look for potential triggers of ERS, we find that the three TKIs induce transient reactive oxygen species followed by lipid peroxidation. Inhibiting either PERK or IRE1α downstream of ERS blocks TKI-induced cardiac damages, represented by the induction of cardiac fetal and pro-inflammatory genes without causing more cell death. CONCLUSIONS: Our data contain rich information about phenotypic and transcriptional responses of human cardiomyocytes to eight TKIs, uncovering potential molecular mechanisms in modulating cardiotoxicity. ER stress is activated by multiple TKIs and leads to cardiotoxicity through promoting expression of pro-inflammatory factors and cardiac fetal genes. ER stress-induced inflammation is a promising therapeutic target to mitigate ponatinib- and sorafenib-induced cardiotoxicity.


Assuntos
Miócitos Cardíacos , Proteínas Serina-Treonina Quinases , Humanos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Cardiotoxicidade/etiologia , Sorafenibe/metabolismo , Sorafenibe/farmacologia , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Apoptose , Estresse do Retículo Endoplasmático/fisiologia
3.
J Nanobiotechnology ; 21(1): 78, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879291

RESUMO

Plant-derived nanovesicles (PDNVs) have been proposed as a major mechanism for the inter-kingdom interaction and communication, but the effector components enclosed in the vesicles and the mechanisms involved are largely unknown. The plant Artemisia annua is known as an anti-malaria agent that also exhibits a wide range of biological activities including the immunoregulatory and anti-tumor properties with the mechanisms to be further addressed. Here, we isolated and purified the exosome-like particles from A. annua, which were characterized by nano-scaled and membrane-bound shape and hence termed artemisia-derived nanovesicles (ADNVs). Remarkably, the vesicles demonstrated to inhibit tumor growth and boost anti-tumor immunity in a mouse model of lung cancer, primarily through remolding the tumor microenvironment and reprogramming tumor-associated macrophages (TAMs). We identified plant-derived mitochondrial DNA (mtDNA), upon internalized into TAMs via the vesicles, as a major effector molecule to induce the cGAS-STING pathway driving the shift of pro-tumor macrophages to anti-tumor phenotype. Furthermore, our data showed that administration of ADNVs greatly improved the efficacy of PD-L1 inhibitor, a prototypic immune checkpoint inhibitor, in tumor-bearing mice. Together, the present study, for the first time, to our knowledge, unravels an inter-kingdom interaction wherein the medical plant-derived mtDNA, via the nanovesicles, induces the immunostimulatory signaling in mammalian immune cells for resetting anti-tumor immunity and promoting tumor eradication.


Assuntos
DNA Mitocondrial , Plantas Medicinais , Animais , Camundongos , Inibidores de Checkpoint Imunológico , Mamíferos , Mitocôndrias , Nucleotidiltransferases , Macrófagos Associados a Tumor
4.
Nat Nanotechnol ; 17(7): 788-798, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35606443

RESUMO

Pyroptosis is a gasdermin-mediated programmed necrosis that occurs via membrane perforation and that can be exploited for biomedical applications in cancer therapy. However, inducing specific pyroptotic cancer cell death while sparing normal cells is challenging. Here, we report an acid-activatable nanophotosensitizer library that can be used to spatiotemporally target distinct stages of endosomal maturation, enabling tunable cellular pyroptosis. Specific activation of phospholipase C signalling transduction in early endosomes triggers gasdermin-E-mediated pyroptosis, which is dramatically reduced when acid-activatable nanophotosensitizers are transported into late endosomes/lysosomes. This nanotuner platform induces pyroptotic cell death with up to 40-fold tunability in various gasdermin-E-positive human cancers, resulting in enhanced anti-tumour efficacy and minimized systemic side effects. This study offers new insights into how to engineer nanomedicines with tunable pyroptosis activity through specific targeting of distinct endocytic signalling for biomedical applications.


Assuntos
Neoplasias , Piroptose , Apoptose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Proteínas de Ligação a Fosfato
5.
Cell Rep ; 38(7): 110373, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172162

RESUMO

mRNA m6A modification is heavily involved in modulation of immune responses. However, its function in antiviral immunity is controversial, and how immune responses regulate m6A modification remains elusive. We here find TBK1, a key kinase of antiviral pathways, phosphorylates the core m6A methyltransferase METTL3 at serine 67. The phosphorylated METTL3 interacts with the translational complex, which is required for enhancing protein translation, thus facilitating antiviral responses. TBK1 also promotes METTL3 activation and m6A modification to stabilize IRF3 mRNA. Type I interferon (IFN) induction is severely impaired in METTL3-deficient cells. Mettl3fl/fl-lyz2-Cre mice are more susceptible to influenza A virus (IAV)-induced lethality than control mice. Consistently, Ythdf1-/- mice show higher mortality than wild-type mice due to decreased IRF3 expression and subsequently attenuated IFN production. Together, we demonstrate that innate signals activate METTL3 via TBK1, and METTL3-mediated m6A modification secures antiviral immunity by promoting mRNA stability and protein translation.


Assuntos
Antivirais/imunologia , Imunidade Inata , Metiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Metiltransferases/química , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Viroses/imunologia , Viroses/patologia
6.
Viruses ; 13(12)2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34960652

RESUMO

Murine hepatitis virus strain A59 (MHV-A59) was shown to induce pyroptosis, apoptosis, and necroptosis of infected cells, especially in the murine macrophages. However, whether ferroptosis, a recently identified form of lytic cell death, was involved in the pathogenicity of MHV-A59 is unknown. We utilized murine macrophages and a C57BL/6 mice intranasal infection model to address this. In primary macrophages, the ferroptosis inhibitor inhibited viral propagation, inflammatory cytokines released, and cell syncytia formed after MHV-A59 infection. In the mouse model, we found that in vivo administration of liproxstatin-1 ameliorated lung inflammation and tissue injuries caused by MHV-A59 infection. To find how MHV-A59 infection influenced the expression of ferroptosis-related genes, we performed RNA-seq in primary macrophages and found that MHV-A59 infection upregulates the expression of the acyl-CoA synthetase long-chain family member 1 (ACSL1), a novel ferroptosis inducer. Using ferroptosis inhibitors and a TLR4 inhibitor, we showed that MHV-A59 resulted in the NF-kB-dependent, TLR4-independent ACSL1 upregulation. Accordingly, ACSL1 inhibitor Triacsin C suppressed MHV-A59-infection-induced syncytia formation and viral propagation in primary macrophages. Collectively, our study indicates that ferroptosis inhibition protects hosts from MHV-A59 infection. Targeting ferroptosis may serve as a potential treatment approach for dealing with hyper-inflammation induced by coronavirus infection.


Assuntos
Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Infecções por Coronavirus/terapia , Ferroptose , Animais , Coenzima A Ligases/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Genes Virais , Lesão Pulmonar/patologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina , Quinoxalinas , Células RAW 264.7 , Compostos de Espiro , Receptor 4 Toll-Like , Replicação Viral/genética
7.
iScience ; 24(3): 102169, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665583

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, characterized by relapsing and remitting colon mucosal inflammation. For patients suffering from UC, a higher risk of colon cancer has been widely recognized. Here, we found that Elf4 -/- mice developed colon tumors with 3 cycles of dextran sulfate sodium salt (DSS) treatment alone. We further showed that ELF4 suppression was prevalent in both patients with UC and DSS-induced mice models, and this suppression was caused by promoter region methylation. ELF4, upon PARylation by PARP1, transcriptionally regulated multiple DNA damage repair machinery components. Consistently, ELF4 deficiency leads to more severe DNA damage both in vitro and in vivo. Oral administration of montmorillonite powder can prevent the reduction of ELF4 in DSS-induced colitis models and lower the risk of colon tumor development during azoxymethane (AOM) and DSS induced colitis-associated cancer (CAC). These data provided additional mechanism of CAC initiation and supported the "epigenetic priming model of tumor initiation".

8.
Oncoimmunology ; 10(1): 1869388, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33520407

RESUMO

Nuclear factor of activated T cells 3 (NFATc3) has been reported to upregulate type I interferons (IFNs) expression, and the abnormal expression and activation of NFATc3 were closely related to tumorigenesis. However, the potential function of NFATc3 in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remains to be elucidated. In this study, we found that NFATc3 gene was frequently deleted and downregulated in HCC tumor tissues, and that the downregulation of NFATc3 was associated with poor prognosis of HCC patients. The gain- and loss-of-function experiments demonstrated that NFATc3 inhibited HCC cell proliferation and invasion, as well as HBV replication. Mechanistically, NFATc3 could bind to the promoters of IFNL1 and IFNB1 genes and prompt the production of IFNs and interferon-stimulated genes. Furthermore, retinoic acid-inducible gene-I (RIG-I) pathway activation increased NFATc3 expression and nuclear localization, and activated NFATc3 further enhanced RIG-I-mediated IFN responses. Collectively, our findings reveal a novel regulatory signaling cascade, the RIG-I/NFATc3/IFNs axis, which inhibits hepatocarcinogenesis and HBV replication by enhancing the immune response in hepatocytes, and this functional axis might potentially be exploited for therapeutic benefits in the clinical treatment of HBV-related HCC.


Assuntos
Carcinoma Hepatocelular , Interferon Tipo I , Neoplasias Hepáticas , Carcinogênese , Carcinoma Hepatocelular/genética , Proteína DEAD-box 58/genética , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/genética , Fatores de Transcrição NFATC/genética , Replicação Viral
9.
Cell Rep ; 34(3): 108631, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472079

RESUMO

Mitochondria not only serve as a platform for innate immune signaling transduction but also enhance immune responses by releasing mitochondrial DNA and RNA into the cytoplasm. However, whether mitochondrial matrix proteins could be liberated and involved in immune responses remains enigmatic. Here, we identify the mitochondrial protein ERA G-protein-like 1 (ERAL1) as a mitochondrial antiviral signaling protein (MAVS)-interacting protein by using proximity-based labeling technology. ERAL1 deficiency markedly reduces the downstream antiviral signaling triggered by RNA viruses. Moreover, ERAL1-deficient mice are more susceptible to lethality following RNA virus infection than wild-type mice. After virus infection, ERAL1 is released from mitochondria through the BAX/BAK pore. The cytosolic ERAL1 facilitates lysine 63 (K63)-linked ubiquitination of retinoicacid inducible gene-1 (RIG-I)/melanoma differentiation-associated gene 5 (MDA5) and promotes downstream MAVS polymerization, thus positively regulating antiviral responses.


Assuntos
Proteína DEAD-box 58/imunologia , Proteínas de Ligação ao GTP/imunologia , Proteínas Mitocondriais/metabolismo , Infecções por Vírus de RNA/imunologia , Proteínas de Ligação a RNA/imunologia , Receptores Imunológicos/imunologia , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/metabolismo , Transdução de Sinais
10.
EMBO Rep ; 22(2): e51162, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33393230

RESUMO

Although iron is required for cell proliferation, iron-dependent programmed cell death serves as a critical barrier to tumor growth and metastasis. Emerging evidence suggests that iron-mediated lipid oxidation also facilitates immune eradication of cancer. However, the regulatory mechanisms of iron metabolism in cancer remain unclear. Here we identify OTUD1 as the deubiquitinase of iron-responsive element-binding protein 2 (IREB2), selectively reduced in colorectal cancer. Clinically, downregulation of OTUD1 is highly correlated with poor outcome of cancer. Mechanistically, OTUD1 promotes transferrin receptor protein 1 (TFRC)-mediated iron transportation through deubiquitinating and stabilizing IREB2, leading to increased ROS generation and ferroptosis. Moreover, the presence of OTUD1 promotes the release of damage-associated molecular patterns (DAMPs), which in turn recruits the leukocytes and strengthens host immune response. Reciprocally, depletion of OTUD1 limits tumor-reactive T-cell accumulation and exacerbates colon cancer progression. Our data demonstrate that OTUD1 plays a stimulatory role in iron transportation and highlight the importance of OTUD1-IREB2-TFRC signaling axis in host antitumor immunity.


Assuntos
Ferroptose , Ferro/metabolismo , Neoplasias/imunologia , Proteases Específicas de Ubiquitina , Antígenos CD , Humanos , Proteína 2 Reguladora do Ferro , Receptores da Transferrina , Transdução de Sinais , Linfócitos T , Proteases Específicas de Ubiquitina/metabolismo
11.
J Immunol ; 204(7): 1904-1918, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32075857

RESUMO

IFN regulatory factor 3 (IRF3) is critical for the transcription of type I IFNs in defensing virus and promoting inflammatory responses. Although several kinds of posttranslational modifications have been identified to modulate the activity of IRF3, whether atypical ubiquitination participates in the function regulation, especially the DNA binding capacity of IRF3, is unknown. In this study, we found that the ovarian tumor domain containing deubiquitinase OTUD1 deubiquitinated IRF3 and attenuated its function. An atypical ubiquitination, K6-linked ubiquitination, was essential for the DNA binding capacity of IRF3 and subsequent induction of target genes. Mechanistically, OTUD1 cleaves the viral infection-induced K6-linked ubiquitination of IRF3, resulting in the disassociation of IRF3 from the promoter region of target genes, without affecting the protein stability, dimerization, and nuclear translocation of IRF3 after a viral infection. Otud1 -/- cells as well as Otud1 -/- mice produced more type I IFNs and proinflammatory cytokines after viral infection. Otud1 -/- mice were more resistant to lethal HSV-1 and VSV infection. Consistent with the former investigations that IRF3 promoted inflammatory responses in LPS-induced sepsis, Otud1 -/- mice were more susceptible to LPS stimulation. Taken together, our findings revealed that the DNA binding capacity of IRF3 in the innate immune signaling pathway was modulated by atypical K6-linked ubiquitination and deubiquitination process, which was regulated by the deubiquitinase OTUD1.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Linhagem Celular , Células HEK293 , Herpes Simples/metabolismo , Herpesvirus Humano 1/patogenicidade , Humanos , Imunidade Inata/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/fisiologia , Estabilidade Proteica , Transdução de Sinais/fisiologia
12.
Cell Host Microbe ; 26(3): 369-384.e8, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31513772

RESUMO

Pathogen pattern recognition receptors (PRRs) trigger innate immune responses to invading pathogens. All known PRRs for viral RNA have extranuclear localization. However, for many viruses, replication generates dsRNA in the nucleus. Here, we show that the nuclear matrix protein SAFA (also known as HnRNPU) functions as a nuclear viral dsRNA sensor for both DNA and RNA viruses. Upon recognition of viral dsRNA, SAFA oligomerizes and activates the enhancers of antiviral genes, including IFNB1. Moreover, SAFA is required for the activation of super-enhancers, which direct vigorous immune gene transcription to establish the antiviral state. Myeloid-specific SAFA-deficient mice were more susceptible to lethal HSV-1 and VSV infection, with decreased type I IFNs. Thus, SAFA functions as a nuclear viral RNA sensor and trans-activator to bridge innate sensing with chromatin remodeling and potentiate robust antiviral responses.


Assuntos
Antivirais/imunologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/imunologia , Proteínas Associadas à Matriz Nuclear/imunologia , RNA Viral/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Adenosina Trifosfatases/genética , Animais , Proteínas Cromossômicas não Histona/genética , DNA Topoisomerases Tipo I/genética , Vírus de DNA , Células HEK293 , Células HeLa , Herpesvirus Humano 1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon , Fator Regulador 7 de Interferon , Camundongos , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Serina-Treonina Quinases , Vírus de RNA , RNA de Cadeia Dupla , Vírus
13.
J Biol Chem ; 294(45): 16494-16508, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31416833

RESUMO

Toxoplasma gondii is an important neurotropic pathogen that establishes latent infections in humans that can cause toxoplasmosis in immunocompromised individuals. It replicates inside host cells and has developed several strategies to manipulate host immune responses. However, the cytoplasmic pathogen-sensing pathway that detects T. gondii is not well-characterized. Here, we found that cyclic GMP-AMP synthase (cGAS), a sensor of foreign dsDNA, is required for activation of anti-T. gondii immune signaling in a mouse model. We also found that mice deficient in STING (Stinggt/gt mice) are much more susceptible to T. gondii infection than WT mice. Of note, the induction of inflammatory cytokines, type I IFNs, and interferon-stimulated genes in the spleen from Stinggt/gt mice was significantly impaired. Stinggt/gt mice exhibited more severe symptoms than cGAS-deficient mice after T. gondii infection. Interestingly, we found that the dense granule protein GRA15 from T. gondii is secreted into the host cell cytoplasm and then localizes to the endoplasmic reticulum, mediated by the second transmembrane motif in GRA15, which is essential for activating STING and innate immune responses. Mechanistically, GRA15 promoted STING polyubiquitination at Lys-337 and STING oligomerization in a TRAF protein-dependent manner. Accordingly, GRA15-deficient T. gondii failed to elicit robust innate immune responses compared with WT T. gondii. Consequently, GRA15-/-T. gondii was more virulent and caused higher mortality of WT mice but not Stinggt/gt mice upon infection. Together, T. gondii infection triggers cGAS/STING signaling, which is enhanced by GRA15 in a STING- and TRAF-dependent manner.


Assuntos
Imunidade Inata , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Interferon gama/metabolismo , Subunidade p35 da Interleucina-12/genética , Subunidade p35 da Interleucina-12/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética , Multimerização Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Baço/metabolismo , Taxa de Sobrevida , Toxoplasma/patogenicidade , Toxoplasmose/mortalidade , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitinação
14.
PLoS One ; 13(8): e0200385, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30089112

RESUMO

The innate immune system plays a critical role in the initial antiviral response. However, the timing and duration of these responses must be tightly regulated during infection to ensure appropriate immune cell activation and anti-viral defenses. Here we demonstrate that during antiviral response, a negative regulator miR-221 was also induced in an ELF4-dependent manner. We further show that ELF4 promotes miR-221 expression through direct binding to its promoter. Overexpression and knockdown assay show that miR-221 can negatively regulate IFNß production in time of virus infection. RNA-seq analysis of miR-221 overexpressed cells revealed multiple candidate targets. Taken together, our study identified a novel negative microRNA regulator of innate antiviral response, which is dependent on ELF4.


Assuntos
Imunidade Inata/genética , MicroRNAs/metabolismo , Infecções por Rhabdoviridae/imunologia , Animais , Antagomirs/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Células HEK293 , Herpesvirus Humano 1/fisiologia , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Infecções por Rhabdoviridae/patologia , Infecções por Rhabdoviridae/virologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Vesiculovirus/genética , Vesiculovirus/imunologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-29124042

RESUMO

E. fischeriana has long been used as a traditional Chinese medicine. Recent studies reported that some compounds of E. fischeriana exhibited antimicrobial and immune enhance activity. Innate immune system is essential for the immune surveillance of inner and outer threats, initial host defense responses and immune modulation. The role of natural drug compounds, including E. fischeriana, in innate immune regulation is largely unknown. Here we demonstrated that E. fischeriana compound Dpo is involved in antiviral signaling. The genome wide RNA-seq analysis revealed that the induction of ISGs by viral infection could be synergized by Dpo. Consistently, Dpo enhanced the antiviral immune responses and protected the mice from death during viral infection. Dpo however was not able to rescue STING deficient mice lethality caused by HSV-1 infection. The enhancement of ISG15 by Dpo was also impaired in STING, IRF3, IRF7, or ELF4 deficient cells, demonstrating that Dpo activates innate immune responses in a STING/IRFs/ELF4 dependent way. The STING/IRFs/ELF4 axis is therefore important for Dpo induced ISGs expression, and can be used by host to counteract infection.


Assuntos
Antivirais/farmacologia , Euphorbia/química , Imunidade Inata , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Animais , Citocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Medicina Tradicional Chinesa , Proteínas de Membrana/metabolismo , Camundongos , Extratos Vegetais/química , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ubiquitinas/metabolismo , Carga Viral
16.
PLoS Pathog ; 13(2): e1006187, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28152074

RESUMO

UBXN proteins likely participate in the global regulation of protein turnover, and we have shown that UBXN1 interferes with RIG-I-like receptor (RLR) signaling by interacting with MAVS and impeding its downstream effector functions. Here we demonstrate that over-expression of multiple UBXN family members decreased lentivirus and retrovirus production by several orders-of-magnitude in single cycle assays, at the level of long terminal repeat-driven transcription, and three family members, UBXN1, N9, and N11 blocked the canonical NFκB pathway by binding to Cullin1 (Cul1), inhibiting IκBα degradation. Multiple regions of UBXN1, including its UBA domain, were critical for its activity. Elimination of UBXN1 resulted in early murine embryonic lethality. shRNA-mediated knockdown of UBXN1 enhanced human immunodeficiency virus type 1 (HIV) production up to 10-fold in single cycle assays. In primary human fibroblasts, knockdown of UBXN1 caused prolonged degradation of IκBα and enhanced NFκB signaling, which was also observed after CRISPR-mediated knockout of UBXN1 in mouse embryo fibroblasts. Knockout of UBXN1 significantly up- and down-regulated hundreds of genes, notably those of several cell adhesion and immune signaling pathways. Reduction in UBXN1 gene expression in Jurkat T cells latently infected with HIV resulted in enhanced HIV gene expression, consistent with the role of UBXN1 in modulating the NFκB pathway. Based upon co-immunoprecipitation studies with host factors known to bind Cul1, models are presented as to how UBXN1 could be inhibiting Cul1 activity. The ability of UBXN1 and other family members to negatively regulate the NFκB pathway may be important for dampening the host immune response in disease processes and also re-activating quiescent HIV from latent viral reservoirs in chronically infected individuals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Infecções por HIV/imunologia , Transdução de Sinais/imunologia , Animais , Técnicas de Inativação de Genes , HIV-1/imunologia , Humanos , Imunoprecipitação , Células Jurkat , Lentivirus/imunologia , Camundongos , Camundongos Knockout , Microscopia Confocal , Inibidor de NF-kappaB alfa/imunologia , NF-kappa B/imunologia , Retroviridae/imunologia
17.
Cell Rep ; 3(4): 1057-70, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23545497

RESUMO

RNA viruses are sensed by RIG-I-like receptors (RLRs), which signal through a mitochondria-associated adaptor molecule, MAVS, resulting in systemic antiviral immune responses. Although RLR signaling is essential for limiting RNA virus replication, it must be stringently controlled to prevent damage from inflammation. We demonstrate here that among all tested UBX-domain-containing protein family members, UBXN1 exhibits the strongest inhibitory effect on RNA-virus-induced type I interferon response. UBXN1 potently inhibits RLR- and MAVS-induced, but not TLR3-, TLR4-, or DNA-virus-induced innate immune responses. Depletion of UBXN1 enhances virus-induced innate immune responses, including those resulting from RNA viruses such as vesicular stomatitis, Sendai, West Nile, and dengue virus infection, repressing viral replication. Following viral infection, UBXN1 is induced, binds to MAVS, interferes with intracellular MAVS oligomerization, and disrupts the MAVS/TRAF3/TRAF6 signalosome. These findings underscore a critical role of UBXN1 in the modulation of a major antiviral signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antivirais/farmacologia , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Interferência de RNA , Vírus de RNA/imunologia , Vírus de RNA/fisiologia , RNA Interferente Pequeno/metabolismo , Receptores Imunológicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA