Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Biomater Res ; 28: 0010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464469

RESUMO

The increasing prevalence of endocrine-disrupting chemicals (EDCs) in our environment is a growing concern, with numerous studies highlighting their adverse effects on the human endocrine system. Among the EDCs, estrogenic endocrine-disrupting chemicals (eEDCs) are exogenous compounds that perturb estrogenic hormone function by interfering with estrogen receptor (ER) homo (α/α, ß/ß) or hetero (α/ß) dimerization. To date, a comprehensive screening approach for eEDCs affecting all ER dimer forms in live cells is lacking. Here, we developed ER dimerization-detecting biosensors (ERDDBs), based on bioluminescence resonance energy transfer, for dimerization detection and rapid eEDC identification. To enhance the performance of these biosensors, we determined optimal donor and acceptor locations using computational analysis. Additionally, employing HaloTag as the acceptor and incorporating the P2A peptide as a linker yielded the highest sensitivity among the prototypes. We also established stable cell lines to screen potential ER dimerization inducers among estrogen analogs (EAs). The EAs were categorized through cross-comparison of ER dimer responses, utilizing EC values derived from a standard curve established with 17ß-estradiol. We successfully classified 26 of 72 EAs, identifying which ER dimerization types they induce. Overall, our study underscores the effectiveness of the optimized ERDDB for detecting ER dimerization and its applicability in screening and identifying eEDCs.

2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474004

RESUMO

The "oxygen effect" improves radiation efficacy; thus, tumor cell oxygen concentration is a crucial factor for improving lung cancer treatment. In the current study, we aimed to identify aerobic exercise-induced changes in oxygen concentrations in non-small cell lung cancer (NSCLC) cells. To this end, an NSCLC xenograft mouse model was established using human A549 cells. Animals were subsequently subjected to aerobic exercise and radiation three times per week for 2 weeks. Aerobic exercise was performed at a speed of 8.0 m/m for 30 min, and the tumor was irradiated with 2 Gy of 6 MV X-rays (total radiation dose 12 Gy). Combined aerobic exercise and radiation reduced NSCLC cell growth. In addition, the positive effect of aerobic exercise on radiation efficacy through oxygenation of tumor cells was confirmed based on hypoxia-inducible factor-1 and carbonic anhydrase IX expression. Finally, whole-transcriptome analysis revealed the key factors that induce oxygenation in NSCLC cells when aerobic exercise was combined with radiation. Taken together, these results indicate that aerobic exercise improves the effectiveness of radiation in the treatment of NSCLC. This preclinical study provides a basis for the clinical application of aerobic exercise to patients with NSCLC undergoing radiation therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Xenoenxertos , Transplante Heterólogo , Modelos Animais de Doenças , Oxigênio/metabolismo , Linhagem Celular Tumoral
3.
Int J Biol Macromol ; 254(Pt 2): 127904, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939770

RESUMO

Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Neoplasias , Humanos , Técnicas Biossensoriais/métodos , Imunoensaio , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Nanotecnologia/métodos , Preparações Farmacêuticas , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico
4.
Elife ; 122023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38131292

RESUMO

Cranial irradiation is used for prophylactic brain radiotherapy as well as the treatment of primary brain tumors. Despite its high efficiency, it often induces unexpected side effects, including cognitive dysfunction. Herein, we observed that mice exposed to cranial irradiation exhibited cognitive dysfunction, including altered spontaneous behavior, decreased spatial memory, and reduced novel object recognition. Analysis of the actin cytoskeleton revealed that ionizing radiation (IR) disrupted the filamentous/globular actin (F/G-actin) ratio and downregulated the actin turnover signaling pathway p21-activated kinase 3 (PAK3)-LIM kinase 1 (LIMK1)-cofilin. Furthermore, we found that IR could upregulate microRNA-206-3 p (miR-206-3 p) targeting PAK3. As the inhibition of miR-206-3 p through antagonist (antagomiR), IR-induced disruption of PAK3 signaling is restored. In addition, intranasal administration of antagomiR-206-3 p recovered IR-induced cognitive impairment in mice. Our results suggest that cranial irradiation-induced cognitive impairment could be ameliorated by regulating PAK3 through antagomiR-206-3 p, thereby affording a promising strategy for protecting cognitive function during cranial irradiation, and promoting quality of life in patients with radiation therapy.


Assuntos
Disfunção Cognitiva , MicroRNAs , Animais , Humanos , Camundongos , Actinas/metabolismo , Antagomirs , Disfunção Cognitiva/genética , Irradiação Craniana/efeitos adversos , Regulação para Baixo , Quinases Lim/metabolismo , MicroRNAs/genética , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Qualidade de Vida
5.
Int J Biol Macromol ; 253(Pt 8): 127511, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866557

RESUMO

Glioblastoma Multiforme (GBM) is a malignant primary brain tumor. Radiotherapy, one of the standard treatments for GBM patients, could induce GBM radioresistance via rewiring cellular metabolism. However, the precise mechanism attributing to GBM radioresistance or targeting strategies to overcome GBM radioresistance are lacking. Here, we demonstrate that SLC25A22, a mitochondrial bi-directional glutamate transporter, is upregulated and showed uni-directionality from mitochondria to cytosol in radioresistant GBM cells, resulting in accumulating cytosolic glutamate. However, mitochondrial glutaminolysis-mediated TCA cycle metabolites and OCR are maintained constantly. The accumulated cytosolic glutamate enhances the glutathione (GSH) production and proline synthesis in radioresistant GBM cells. Increased GSH protects cells against ionizing radiation (IR)-induced reactive oxygen species (ROS) whereas increased proline, a rate-limiting substrate for collagen biosynthesis, induces extracellular matrix (ECM) remodeling, leading to GBM invasive phenotypes. Finally, we discover that genetic inhibition of SLC25A22 using miR-184 mimic decreases GBM radioresistance and aggressiveness both in vitro and in vivo. Collectively, our study suggests that SLC25A22 upregulation confers GBM radioresistance by rewiring glutamate metabolism, and SLC25A22 could be a significant therapeutic target to overcome GBM radioresistance.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Ácido Glutâmico , Tolerância a Radiação/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Mitocôndrias/metabolismo , Prolina , Proteínas de Transporte da Membrana Mitocondrial
6.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188988, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726064

RESUMO

The Warburg effect is a phenomenon in which cancer cells rely primarily on glycolysis rather than oxidative phosphorylation, even in the presence of oxygen. Although evidence of its involvement in cell proliferation has been discovered, the advantages of the Warburg effect in cancer cell survival under treatment have not been fully elucidated. In recent years, the metabolic characteristics of radioresistant cancer cells have been evaluated, enabling an extension of the original concept of the Warburg effect. In this review, we focused on the role of the Warburg effect in redox homeostasis and DNA damage repair, two critical factors contributing to radioresistance. In addition, we highlighted the metabolic involvement in the radioresistance of cancer stem cells, which is the root cause of tumor recurrence. Finally, we summarized radiosensitizing drugs that target the Warburg effect. Insights into the molecular mechanisms underlying the Warburg effect and radioresistance can provide valuable information for developing strategies to enhance the efficacy of radiotherapy and provide future directions for successful cancer therapy.


Assuntos
Neoplasias , Radiossensibilizantes , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/radioterapia , Glicólise , Fosforilação Oxidativa , Oxigênio/metabolismo
7.
BMC Cancer ; 23(1): 818, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667226

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and has a poor prognosis. Identifying biomarkers based on molecular mechanisms is critical for early diagnosis, timely treatment, and improved prognosis of lung cancer. MALAT1 has been reported to have overexpressed and tumor-promoting functions in NSCLC. It has been proposed as a potential biomarker for the diagnosis and prognosis of cancer. Therefore, this study was conducted to profile the changes in gene expression according to the regulation of expression of MALAT1 in NSCLC cell lines and to investigate the correlation through bioinformatic analysis of differentially expressed genes (DEGs). METHODS: MALAT1 expression levels were measured using RT-qPCR. The biological functions of MALAT1 in NSCLC were analyzed by cell counting, colony forming, wound-healing, and Transwell invasion assays. In addition, gene expression profiling in response to the knockdown of MALAT1 was analyzed by transcriptome sequencing, and differentially expressed genes regulated by MALAT1 were performed by GO and KEGG pathway enrichment analyses. Bioinformatic databases were used for gene expression analysis and overall survival analysis. RESULTS: Comparative analysis versus MALAT1 expression in MRC5 cells (a normal lung cell line) and the three NSCLC cell lines showed that MALAT1 expression was significantly higher in the NSCLC cells. MALAT1 knockdown decreased cell survival, proliferation, migration, and invasion in all three NSCLC cell lines. RNA-seq analysis of DEGs in NSCLC cells showed 198 DEGs were upregulated and 266 DEGs downregulated by MALAT1 knockdown in all three NSCLC cell lines. Survival analysis on these common DEGs performed using the OncoLnc database resulted in the selection of five DEGs, phosphoglycerate mutase 1 (PGAM1), phosphoglycerate mutase 4 (PGAM4), nucleolar protein 6 (NOL6), nucleosome assembly protein 1 like 5 (NAP1L5), and sestrin1 (SESN1). The gene expression levels of these selected DEGs were proved to gene expression analysis using the TNMplot database. CONCLUSION: MALAT1 might function as an oncogene that enhances NSCLC cell survival, proliferation, colony formation, and invasion. RNA-seq and bioinformatic analyses resulted in the selection of five DEGs, PGAM1, PGAM4, NOL6, NAP1L5, and SESN1, which were found to be closely related to patient survival and tumorigenesis. We believe that further investigation of these five DEGs will provide valuable information on the oncogenic role of MALAT1 in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Perfilação da Expressão Gênica , Neoplasias Pulmonares/genética , Fosfoglicerato Mutase , RNA Longo não Codificante/genética
8.
J Extracell Vesicles ; 12(5): e12325, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37140946

RESUMO

People exposed to radiation in cancer therapy and nuclear accidents are at increased risk of cardiovascular outcomes in long-term survivors. Extracellular vesicles (EVs) are involved in radiation-induced endothelial dysfunction, but their role in the early stage of vascular inflammation after radiation exposure remains to be fully understood. Herein, we demonstrate that endothelial cell-derived EVs containing miRNAs initiate monocyte activation in radiation-induced vascular inflammation. In vitro co-culture and in vivo experimental data showed that endothelial EVs can be sensitively increased by radiation exposure in a dose-dependent manner, and stimulate monocytes releasing monocytic EVs and adhesion to endothelial cells together with an increase in the expression of genes encoding specific ligands for cell-cell interaction. Small RNA sequencing and transfection using mimics and inhibitors explained that miR-126-5p and miR-212-3p enriched in endothelial EVs initiate vascular inflammation by monocyte activation after radiation exposure. Moreover, miR-126-5p could be detected in the circulating endothelial EVs of radiation-induced atherosclerosis model mice, which was found to be tightly correlated with the atherogenic index of plasma. In summary, our study showed that miR-126-5p and miR-212-3p present in the endothelial EVs mediate the inflammatory signals to activate monocytes in radiation-induced vascular injury. A better understanding of the circulating endothelial EVs content can promote their use as diagnostic and prognostic biomarkers for atherosclerosis after radiation exposure.


Assuntos
Aterosclerose , Vesículas Extracelulares , MicroRNAs , Animais , Camundongos , Monócitos/metabolismo , Vesículas Extracelulares/metabolismo , Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Aterosclerose/etiologia , Inflamação/metabolismo
9.
Anim Cells Syst (Seoul) ; 27(1): 19-28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819921

RESUMO

Glioma is the most common primary malignant brain tumor in adults and accounts for approximately 80% of brain and central nervous system tumors. In 2021, the World Health Organization (WHO) published a new taxonomy for glioma based on its histological features and molecular alterations. Isocitrate dehydrogenase (IDH) catalyzes the decarboxylation of isocitrate, a critical metabolic reaction in energy generation in cells. Mutations in the IDH genes interrupt cell differentiation and serve as molecular biomarkers that can be used to classify gliomas. For example, the mutant IDH is widely detected in low-grade gliomas, whereas the wild type is in high-grade ones, including glioblastomas. Long non-coding RNAs (lncRNAs) are epigenetically involved in gene expression and contribute to glioma development. To investigate the potential use of lncRNAs as biomarkers, we examined lncRNA dysregulation dependent on the IDH mutation status. We found that several lncRNAs, namely, AL606760.2, H19, MALAT1, PVT1 and SBF2-AS1 may function as glioma risk factors, whereas AC068643.1, AC079228.1, DGCR5, FAM13A-AS1, HAR1A and WDFY3-AS2 may have protective effects. Notably, H19, MALAT1, PVT1, and SBF2-AS1 have been associated with temozolomide resistance in glioma patients. This review study suggests that targeting glioma-associated lncRNAs might aid the treatment of glioma.

10.
Cell Rep Med ; 4(1): 100880, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36603576

RESUMO

Glioblastoma (GBM) currently has a dismal prognosis. GBM cells that survive radiotherapy contribute to tumor progression and recurrence with metabolic advantages. Here, we show that diacylglycerol kinase B (DGKB), a regulator of the intracellular concentration of diacylglycerol (DAG), is significantly downregulated in radioresistant GBM cells. The downregulation of DGKB increases DAG accumulation and decreases fatty acid oxidation, contributing to radioresistance by reducing mitochondrial lipotoxicity. Diacylglycerol acyltransferase 1 (DGAT1), which catalyzes the formation of triglycerides from DAG, is increased after ionizing radiation. Genetic inhibition of DGAT1 using short hairpin RNA (shRNA) or microRNA-3918 (miR-3918) mimic suppresses radioresistance. We discover that cladribine, a clinical drug, activates DGKB, inhibits DGAT1, and sensitizes GBM cells to radiotherapy in vitro and in vivo. Together, our study demonstrates that DGKB downregulation and DGAT1 upregulation confer radioresistance by reducing mitochondrial lipotoxicity and suggests DGKB and DGAT1 as therapeutic targets to overcome GBM radioresistance.


Assuntos
Diacilglicerol Quinase , Glioblastoma , Humanos , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Lipídeos/toxicidade , Triglicerídeos/metabolismo , Regulação para Cima
11.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430293

RESUMO

Glioblastoma (GBM) is the most malignant primary brain tumor. Despite increasing research on GBM treatment, the overall survival rate has not significantly improved over the last two decades. Although recent studies have focused on aberrant metabolism in GBM, there have been few advances in clinical application. Thus, it is important to understand the systemic metabolism to eradicate GBM. Together with the Warburg effect, lipid metabolism has emerged as necessary for GBM progression. GBM cells utilize lipid metabolism to acquire energy, membrane components, and signaling molecules for proliferation, survival, and response to the tumor microenvironment. In this review, we discuss fundamental cholesterol, fatty acid, and sphingolipid metabolism in the brain and the distinct metabolic alterations in GBM. In addition, we summarize various studies on the regulation of factors involved in lipid metabolism in GBM therapy. Focusing on the rewiring of lipid metabolism will be an alternative and effective therapeutic strategy for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Metabolismo dos Lipídeos , Neoplasias Encefálicas/metabolismo , Oncogenes , Carcinogênese , Microambiente Tumoral
12.
Exp Mol Med ; 54(11): 1872-1885, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36333468

RESUMO

Overcoming therapeutic resistance in glioblastoma (GBM) is an essential strategy for improving cancer therapy. However, cancer cells possess various evasion mechanisms, such as metabolic reprogramming, which promote cell survival and limit therapy. The diverse metabolic fuel sources that are produced by autophagy provide tumors with metabolic plasticity and are known to induce drug or radioresistance in GBM. This study determined that autophagy, a common representative cell homeostasis mechanism, was upregulated upon treatment of GBM cells with ionizing radiation (IR). Nuclear receptor binding factor 2 (NRBF2)-a positive regulator of the autophagy initiation step-was found to be upregulated in a GBM orthotopic xenograft mouse model. Furthermore, ATP production and the oxygen consumption rate (OCR) increased upon activation of NRBF2-mediated autophagy. It was also discovered that changes in metabolic state were induced by alterations in metabolite levels caused by autophagy, thereby causing radioresistance. In addition, we found that lidoflazine-a vasodilator agent discovered through drug repositioning-significantly suppressed IR-induced migration, invasion, and proliferation by inhibiting NRBF2, resulting in a reduction in autophagic flux in both in vitro models and in vivo orthotopic xenograft mouse models. In summary, we propose that the upregulation of NRBF2 levels reprograms the metabolic state of GBM cells by activating autophagy, thus establishing NRBF2 as a potential therapeutic target for regulating radioresistance of GBM during radiotherapy.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Neoplasias Encefálicas , Glioblastoma , Tolerância a Radiação , Transativadores , Animais , Humanos , Camundongos , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Sobrevivência Celular , Modelos Animais de Doenças , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Transativadores/metabolismo , Lidoflazina/uso terapêutico
13.
Cells ; 11(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36231065

RESUMO

Cancer cachexia is a muscle-wasting syndrome that leads to a severely compromised quality of life and increased mortality. A strong association between cachexia and poor prognosis has been demonstrated in intractable cancers, including glioblastoma (GBM). In the present study, it was demonstrated that ionizing radiation (IR), the first-line treatment for GBM, causes cancer cachexia by increasing the exosomal release of plasminogen activator inhibitor-1 (PAI-1) from glioblastoma cells. Exosomal PAI-1 delivered to the skeletal muscle is directly penetrated in the muscles and phosphorylates STAT3 to intensify muscle atrophy by activating muscle RING-finger protein-1 (MuRF1) and muscle atrophy F-box (Atrogin1); furthermore, it hampers muscle protein synthesis by inhibiting mTOR signaling. Additionally, pharmacological inhibition of PAI-1 by TM5441 inhibited muscle atrophy and rescued muscle protein synthesis, thereby providing survival benefits in a GBM orthotopic xenograft mouse model. In summary, our data delineated the role of PAI-1 in the induction of GBM cachexia associated with radiotherapy-treated GBM. Our data also indicated that targeting PAI-1 could serve as an attractive strategy for the management of GBM following radiotherapy, which would lead to a considerable improvement in the quality of life of GBM patients undergoing radiotherapy.


Assuntos
Caquexia , Glioblastoma , Animais , Caquexia/etiologia , Caquexia/metabolismo , Glioblastoma/complicações , Glioblastoma/radioterapia , Humanos , Camundongos , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Inibidor 1 de Ativador de Plasminogênio , Qualidade de Vida , Radiação Ionizante , Serina-Treonina Quinases TOR
14.
Biomedicines ; 10(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35740330

RESUMO

Glioblastoma (GBM) is the most malignant primary brain tumor. The current standard approach in GBM is surgery, followed by treatment with radiation and temozolomide (TMZ); however, GBM is highly resistant to current therapies, and the standard of care has not been revised over the last two decades, indicating an unmet need for new therapies. GBM stem cells (GSCs) are a major cause of chemoresistance due to their ability to confer heterogeneity and tumorigenic capacity. To improve patient outcomes and survival, it is necessary to understand the properties and mechanisms underlying GSC chemoresistance. In this review, we describe the current knowledge on various resistance mechanisms of GBM to therapeutic agents, with a special focus on TMZ, and summarize the recent findings on the intrinsic and extrinsic mechanisms of chemoresistance in GSCs. We also discuss novel therapeutic strategies, including molecular targeting, autophagy inhibition, oncolytic viral therapy, drug repositioning, and targeting of GSC niches, to eliminate GSCs, from basic research findings to ongoing clinical trials. Although the development of effective therapies for GBM is still challenging, this review provides a better understanding of GSCs and offers future directions for successful GBM therapy.

15.
J Exp Clin Cancer Res ; 40(1): 282, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488821

RESUMO

BACKGROUND: Glioblastoma Multiforme (GBM) is a malignant primary brain tumor in which the standard treatment, ionizing radiation (IR), achieves a median survival of about 15 months. GBM harbors glioblastoma stem-like cells (GSCs), which play a crucial role in therapeutic resistance and recurrence. METHODS: Patient-derived GSCs, GBM cell lines, intracranial GBM xenografts, and GBM sections were used to measure mRNA and protein expression and determine the related molecular mechanisms by qRT-PCR, immunoblot, immunoprecipitation, immunofluorescence, OCR, ECAR, live-cell imaging, and immunohistochemistry. Orthotopic GBM xenograft models were applied to investigate tumor inhibitory effects of glimepiride combined with radiotherapy. RESULTS: We report that GSCs that survive standard treatment radiation upregulate Speedy/RINGO cell cycle regulator family member A (Spy1) and downregulate CAP-Gly domain containing linker protein 3 (CLIP3, also known as CLIPR-59). We discovered that Spy1 activation and CLIP3 inhibition coordinately shift GBM cell glucose metabolism to favor glycolysis via two cellular processes: transcriptional regulation of CLIP3 and facilitating Glucose transporter 3 (GLUT3) trafficking to cellular membranes in GBM cells. Importantly, in combination with IR, glimepiride, an FDA-approved medication used to treat type 2 diabetes mellitus, disrupts GSCs maintenance and suppresses glycolytic activity by restoring CLIP3 function. In addition, combining radiotherapy and glimepiride significantly reduced GBM growth and improved survival in a GBM orthotopic xenograft mouse model. CONCLUSIONS: Our data suggest that radioresistant GBM cells exhibit enhanced stemness and glycolytic activity mediated by the Spy1-CLIP3 axis. Thus, glimepiride could be an attractive strategy for overcoming radioresistance and recurrence by rescuing CLIP3 expression.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/radioterapia , Glicólise , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576008

RESUMO

GBM is a high-grade cancer that originates from glial cells and has a poor prognosis. Although a combination of surgery, radiotherapy, and chemotherapy is prescribed to patients, GBM is highly resistant to therapies, and surviving cells show increased aggressiveness. In this study, we investigated the molecular mechanism underlying GBM progression after radiotherapy by establishing a GBM orthotopic xenograft mouse model. Based on transcriptomic analysis, we found that the expression of BEX1 and BEX4 was upregulated in GBM cells surviving radiotherapy. We also found that upregulated expression of BEX1 and BEX4 was involved in the formation of the filamentous cytoskeleton and altered mechanotransduction, which resulted in the activation of the YAP/TAZ signaling pathway. BEX1- and BEX4-mediated YAP/TAZ activation enhanced the tumor formation, growth, and radioresistance of GBM cells. Additionally, latrunculin B inhibited GBM progression after radiotherapy by suppressing actin polymerization in an orthotopic xenograft mouse model. Taken together, we suggest the involvement of cytoskeleton formation in radiation-induced GBM progression and latrunculin B as a GBM radiosensitizer.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glioblastoma/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Transplante de Neoplasias , Proteínas do Tecido Nervoso/genética , Proteínas Oncogênicas/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
17.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065991

RESUMO

Although there are many patients with brain tumors worldwide, there are numerous difficulties in overcoming brain tumors. Among brain tumors, glioblastoma, with a 5-year survival rate of 5.1%, is the most malignant. In addition to surgical operations, chemotherapy and radiotherapy are generally performed, but the patients have very limited options. Temozolomide is the most commonly prescribed drug for patients with glioblastoma. However, it is difficult to completely remove the tumor with this drug alone. Therefore, it is necessary to discuss the potential of anticancer drugs, other than temozolomide, against glioblastomas. Since the discovery of cisplatin, platinum-based drugs have become one of the leading chemotherapeutic drugs. Although many studies have reported the efficacy of platinum-based anticancer drugs against various carcinomas, studies on their effectiveness against brain tumors are insufficient. In this review, we elucidated the anticancer effects and advantages of platinum-based drugs used in brain tumors. In addition, the cases and limitations of the clinical application of platinum-based drugs are summarized. As a solution to overcome these obstacles, we emphasized the potential of a novel approach to increase the effectiveness of platinum-based drugs.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Compostos de Platina/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Compostos de Platina/farmacologia , Análise de Sobrevida , Resultado do Tratamento
18.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804169

RESUMO

Glioblastoma multiforme (GBM) is a malignant primary brain tumor with poor patient prognosis. Although the standard treatment of GBM is surgery followed by chemotherapy and radiotherapy, often a small portion of surviving tumor cells acquire therapeutic resistance and become more aggressive. Recently, altered kinase expression and activity have been shown to determine metabolic flux in tumor cells and metabolic reprogramming has emerged as a tumor progression regulatory mechanism. Here we investigated novel kinase-mediated metabolic alterations that lead to acquired GBM radioresistance and malignancy. We utilized transcriptomic analyses within a radioresistant GBM orthotopic xenograft mouse model that overexpresses the dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3). We find that within GBM cells, radiation exposure induces DYRK3 expression and DYRK3 regulates mammalian target of rapamycin complex 1 (mTORC1) activity through phosphorylation of proline-rich AKT1 substrate 1 (PRAS40). We also find that DYRK3 knockdown inhibits dynamin-related protein 1 (DRP1)-mediated mitochondrial fission, leading to increased oxidative phosphorylation (OXPHOS) and reduced glycolysis. Importantly, enforced DYRK3 downregulation following irradiation significantly impaired GBM cell migration and invasion. Collectively, we suggest DYRK3 suppression may be a novel strategy for preventing GBM malignancy through regulating mitochondrial metabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Dinaminas/genética , Glioblastoma/radioterapia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Mitocôndrias/efeitos da radiação , Fosforilação Oxidativa/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/genética , Tolerância a Radiação/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Front Cell Dev Biol ; 9: 668735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912571

RESUMO

Autophagy is an important subcellular event engaged in the maintenance of cellular homeostasis via the degradation of cargo proteins and malfunctioning organelles. In response to cellular stresses, like nutrient deprivation, infection, and DNA damaging agents, autophagy is activated to reduce the damage and restore cellular homeostasis. One of the responses to cellular stresses is the DNA damage response (DDR), the intracellular pathway that senses and repairs damaged DNA. Proper regulation of these pathways is crucial for preventing diseases. The involvement of autophagy in the repair and elimination of DNA aberrations is essential for cell survival and recovery to normal conditions, highlighting the importance of autophagy in the resolution of cell fate. In this review, we summarized the latest information about autophagic recycling of mitochondria, endoplasmic reticulum (ER), and ribosomes (called mitophagy, ER-phagy, and ribophagy, respectively) in response to DNA damage. In addition, we have described the key events necessary for a comprehensive understanding of autophagy signaling networks. Finally, we have highlighted the importance of the autophagy activated by DDR and appropriate regulation of autophagic organelles, suggesting insights for future studies. Especially, DDR from DNA damaging agents including ionizing radiation (IR) or anti-cancer drugs, induces damage to subcellular organelles and autophagy is the key mechanism for removing impaired organelles.

20.
Front Genet ; 11: 566244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133150

RESUMO

Ionizing radiation (IR) is a high-energy radiation whose biological effects depend on the irradiation doses. Low-dose radiation (LDR) is delivered during medical diagnoses or by an exposure to radioactive elements and has been linked to the occurrence of chronic diseases, such as leukemia and cardiovascular diseases. Though epidemiological research is indispensable for predicting and dealing with LDR-induced abnormalities in individuals exposed to LDR, little is known about epidemiological markers of LDR exposure. Moreover, difference in the LDR-induced molecular events in each organ has been an obstacle to a thorough investigation of the LDR effects and a validation of the experimental results in in vivo models. In this review, we summarized the recent reports on LDR-induced risk of organ-specifically arranged the alterations for a comprehensive understanding of the biological effects of LDR. We suggested that LDR basically caused the accumulation of DNA damages, controlled systemic immune systems, induced oxidative damages on peripheral organs, and even benefited the viability in some organs. Furthermore, we concluded that understanding of organ-specific responses and the biological markers involved in the responses is needed to investigate the precise biological effects of LDR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA