Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 102916, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649908

RESUMO

In the majority of human cancer cells, cellular immortalization depends on the maintenance of telomere length by telomerase. An essential step required for telomerase function is its recruitment to telomeres, which is regulated by the interaction of the telomere protein, TPP1, with the telomerase essential N-terminal (TEN) domain of the human telomerase reverse transcriptase, hTERT. We previously reported that the hTERT 'insertion in fingers domain' (IFD) recruits telomerase to telomeres in a TPP1-dependent manner. Here, we use hTERT truncations and the IFD domain containing mutations in conserved residues or premature aging disease-associated mutations to map the interactions between the IFD and TPP1. We find that the hTERT-IFD domain can interact with TPP1. However, deletion of the IFD motif in hTERT lacking the N-terminus and the C-terminal extension does not abolish interaction with TPP1, suggesting the IFD is not essential for hTERT interaction with TPP1. Several conserved residues in the central IFD-TRAP region that we reported regulate telomerase recruitment to telomeres, and cell immortalization compromise interaction of the hTERT-IFD domain with TPP1 when mutated. Using a similar approach, we find that the IFD domain interacts with the TEN domain but is not essential for intramolecular hTERT interactions with the TEN domain. IFD-TEN interactions are not disrupted by multiple amino acid changes in the IFD or TEN, thus highlighting a complex regulation of IFD-TEN interactions as suggested by recent cryo-EM structures of human telomerase.


Assuntos
Complexo Shelterina , Telomerase , Proteínas de Ligação a Telômeros , Humanos , Linhagem Celular , Mutação , Telomerase/química , Telomerase/metabolismo , Telômero/química , Telômero/metabolismo , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo , Complexo Shelterina/química , Complexo Shelterina/metabolismo
2.
DNA Repair (Amst) ; 100: 103055, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33581499

RESUMO

The maintenance of telomeres, which are specialized stretches of DNA found at the ends of linear chromosomes, is a crucial step for the immortalization of cancer cells. Approximately 10-15 % of cancer cells use a homologous recombination-based mechanism known as the Alternative Lengthening of Telomeres (ALT) pathway to maintain their telomeres. Telomeres in general pose a challenge to DNA replication owing to their repetitive nature and potential for forming secondary structures. Telomeres in ALT+ cells especially are subject to elevated levels of replication stress compared to telomeres that are maintained by the enzyme telomerase, in part due to the incorporation of telomeric variant repeats at ALT+ telomeres, their on average longer lengths, and their modified chromatin states. Many DNA metabolic strategies exist to counter replication stress and to protect stalled replication forks. The role of proliferating cell nuclear antigen (PCNA) as a platform for recruiting protein partners that participate in several of these DNA replication and repair pathways has been well-documented. We propose that many of these pathways may be active at ALT+ telomeres, either to facilitate DNA replication, to manage replication stress, or during telomere extension. Here, we summarize recent evidence detailing the role of PCNA in pathways including DNA secondary structure resolution, DNA damage bypass, replication fork restart, and DNA damage synthesis. We propose that an examination of PCNA and its post-translational modifications (PTMs) may offer a unique lens by which we might gain insight into the DNA metabolic landscape that is distinctively present at ALT+ telomeres.


Assuntos
Antígeno Nuclear de Célula em Proliferação/metabolismo , Reparo de DNA por Recombinação , Homeostase do Telômero , DNA/metabolismo , Replicação do DNA , Eucariotos/genética , Eucariotos/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo
3.
Chem Biol Interact ; 299: 151-162, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30537466

RESUMO

Protein S-glutathionylation reactions are a ubiquitous oxidative modification required to control protein function in response to changes in redox buffering capacity. These reactions are rapid and reversible and are, for the most part, enzymatically mediated by glutaredoxins (GRX) and glutathione S-transferases (GST). Protein S-glutathionylation has been found to control a range of cell functions in response to different physiological cues. Although these reactions occur throughout the cell, mitochondrial proteins seem to be highly susceptible to reversible S-glutathionylation, a feature attributed to the unique physical properties of this organelle. Indeed, mitochondria contain a number of S-glutathionylation targets which includes proteins involved in energy metabolism, solute transport, reactive oxygen species (ROS) production, proton leaks, apoptosis, antioxidant defense, and mitochondrial fission and fusion. Moreover, it has been found that conjugation and removal of glutathione from proteins in mitochondria fulfills a number of important physiological roles and defects in these reactions can have some dire pathological consequences. Here, we provide an updated overview on mitochondrial protein S-glutathionylation reactions and their importance in cell functions and physiology.


Assuntos
Glutationa/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Antioxidantes/metabolismo , Glutarredoxinas/metabolismo , Glutationa Transferase/metabolismo , Dinâmica Mitocondrial , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
4.
PLoS One ; 13(2): e0192801, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444156

RESUMO

Protein S-glutathionylation is a reversible redox modification that regulates mitochondrial metabolism and reactive oxygen species (ROS) production in liver and cardiac tissue. However, whether or not it controls ROS release from skeletal muscle mitochondria has not been explored. In the present study, we examined if chemically-induced protein S-glutathionylation could alter superoxide (O2●-)/hydrogen peroxide (H2O2) release from isolated muscle mitochondria. Disulfiram, a powerful chemical S-glutathionylation catalyst, was used to S-glutathionylate mitochondrial proteins and ascertain if it can alter ROS production. It was found that O2●-/H2O2 release rates from permeabilized muscle mitochondria decreased with increasing doses of disulfiram (100-500 µM). This effect was highest in mitochondria oxidizing succinate or palmitoyl-carnitine, where a ~80-90% decrease in the rate of ROS release was observed. Similar effects were detected in intact mitochondria respiring under state 4 conditions. Incubation of disulfiram-treated mitochondria with DTT (2 mM) restored ROS release confirming that these effects were associated with protein S-glutathionylation. Disulfiram treatment also inhibited phosphorylating and proton leak-dependent respiration. Radiolabelled substrate uptake experiments demonstrated that disulfiram inhibited pyruvate import but had no effect on carnitine uptake. Immunoblot analysis of complex I revealed that it contained several protein S-glutathionylation targets including NDUSF1, a subunit required for NADH oxidation. Taken together, these results demonstrate that O2●-/H2O2 release from muscle mitochondria can be altered by protein S-glutathionylation. We attribute these changes to the protein S-glutathionylation complex I and inhibition of mitochondrial pyruvate carrier.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Carnitina/metabolismo , Dissulfiram/farmacologia , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/efeitos dos fármacos , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Ácido Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
5.
Biochim Biophys Acta Gen Subj ; 1861(8): 1960-1969, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28506882

RESUMO

Pyruvate dehydrogenase (PDHC) and α-ketoglutarate dehydrogenase complex (KGDHC) are important sources of reactive oxygen species (ROS). In addition, it has been found that mitochondria can also serve as sinks for cellular hydrogen peroxide (H2O2). However, the ROS forming and quenching capacity of liver mitochondria has never been thoroughly examined. Here, we show that mouse liver mitochondria use catalase, glutathione (GSH), and peroxiredoxin (PRX) systems to quench ROS. Incubation of mitochondria with catalase inhibitor 3-amino-1,2,4-triazole (triazole) induced a significant increase in pyruvate or α-ketoglutarate driven O2-/H2O2 formation. 1-Choro-2,4-dinitrobenzene (CDNB), which depletes glutathione (GSH), elicited a similar effect. Auranofin (AF), a thioredoxin reductase-2 (TR2) inhibitor which disables the PRX system, did not significantly change O2-/H2O2 formation. By contrast catalase, GSH, and PRX were all required to scavenging extramitochondrial H2O2. In this study, the ROS forming potential of PDHC, KGDHC, Complex I, and Complex III was also profiled. Titration of mitochondria with 3-methyl-2-oxovaleric acid (KMV), a specific inhibitor for O2-/H2O2 production by KGDHC, induced a ~86% and ~84% decrease in ROS production during α-ketoglutarate and pyruvate oxidation. Titration of myxothiazol, a Complex III inhibitor, decreased O2-/H2O2 formation by ~45%. Rotenone also lowered ROS production in mitochondria metabolizing pyruvate or α-ketoglutarate indicating that Complex I does not contribute to ROS production during forward electron transfer from NADH. Taken together, our results indicate that KGDHC and Complex III are high capacity sites for O2-/H2O2 production in mouse liver mitochondria. We also confirm that catalase plays a role in quenching either exogenous or intramitochondrial H2O2.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Superóxidos/metabolismo , Animais , Caprilatos/farmacologia , Catalase/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/fisiologia , Glutationa/metabolismo , Complexo Cetoglutarato Desidrogenase/fisiologia , Masculino , Metacrilatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Peroxirredoxinas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/farmacologia , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA