Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 9(10)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022945

RESUMO

Salmonella enterica serovar Typhimurium (ST) remains a major infectious agent in the USA, with an increasing antibiotic resistance pattern, which requires the development of novel antimicrobials capable of controlling ST. Polyphenolic compounds found in plant extracts are strong candidates as alternative antimicrobials, particularly phenolic acids such as gallic acid (GA), protocatechuic acid (PA) and vanillic acid (VA). This study evaluates the effectiveness of these compounds in inhibiting ST growth while determining changes to the outer membrane through fluorescent dye uptake and scanning electron microscopy (SEM), in addition to measuring alterations to virulence genes with qRT-PCR. Results showed antimicrobial potential for all compounds, significantly inhibiting the detectable growth of ST. Fluorescent spectrophotometry and microscopy detected an increase in relative fluorescent intensity (RFI) and red-colored bacteria over time, suggesting membrane permeabilization. SEM revealed severe morphological defects at the polar ends of bacteria treated with GA and PA, while VA-treated bacteria were found to be mid-division. Relative gene expression showed significant downregulation in master regulator hilA and invH after GA and PA treatments, while fliC was upregulated in VA. Results suggest that GA, PA and VA have antimicrobial potential that warrants further research into their mechanism of action and the interactions that lead to ST death.

2.
J Food Prot ; 83(8): 1463-1471, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32299102

RESUMO

ABSTRACT: Organic farming, including integrated crop-livestock farms and backyard farming, is gaining popularity in the United States, and products from these farms are commonly sold at farmers' markets, local stores, and roadside stalls. Because organic farms avoid using antibiotics and chemicals and because they use composted animal waste and nonprofessional harvesting and packaging methods, their products have an increased risk of cross-contamination with zoonotic pathogens. This study sets out to evaluate the efficiency of new postharvest disinfection processes using natural berry pomace extracts (BPEs) as a means to reduce the bacterial load found in two common leafy greens, spinach and celery. Spinach and celery were inoculated with a fixed bacterial load of Salmonella Typhimurium and later were soaked in BPE-supplemented water (wBPE) for increasing periods of time, at two different temperatures (24 and 4°C). The remaining live bacteria were quantified (log CFU per leaf), and numbers were compared with those on vegetables soaked in water alone. The relative expression of virulence genes (hilA1/C1/D1, invA1/C1/E1/F1) of wBPE-treated Salmonella Typhimurium was determined. For spinach, there was a significant (P < 0.05) reduction of Salmonella Typhimurium: 0.2 to 1.2 log CFU/mL and 0.5 to 5 log CFU/mL at 24 and 4°C, respectively. For celery, there was also a significant (P < 0.05) reduction of Salmonella Typhimurium at either 24 or 4°C. The changes in relative expression of virulence genes of Salmonella Typhimurium isolated from spinach and celery varied depending on the treatment conditions but showed a significant down-regulation of inv genes when treated at 24°C for 1,440 min (P < 0.05). After seven uses, the total polyphenolic compounds in wBPE remained at an effective concentration. This research suggests that soaking these vegetables with BPE-containing water at lower temperatures can still reduce the Salmonella Typhimurium load enough to minimize the risk of infection and alter virulence properties.


Assuntos
Frutas , Spinacia oleracea , Animais , Extratos Vegetais/farmacologia , Salmonella typhimurium/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA