Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34934014

RESUMO

Cyclic adenosine monophosphate (cAMP) is a pivotal second messenger with an essential role in neuronal function. cAMP synthesis by adenylyl cyclases (AC) is controlled by G protein-coupled receptor (GPCR) signaling systems. However, the network of molecular players involved in the process is incompletely defined. Here, we used CRISPR/Cas9-based screening to identify that members of the potassium channel tetradimerization domain (KCTD) family are major regulators of cAMP signaling. Focusing on striatal neurons, we show that the dominant isoform KCTD5 exerts its effects through an unusual mechanism that modulates the influx of Zn2+ via the Zip14 transporter to exert unique allosteric effects on AC. We further show that KCTD5 controls the amplitude and sensitivity of stimulatory GPCR inputs to cAMP production by Gßγ-mediated AC regulation. Finally, we report that KCTD5 haploinsufficiency in mice leads to motor deficits that can be reversed by chelating Zn2+ Together, our findings uncover KCTD proteins as major regulators of neuronal cAMP signaling via diverse mechanisms.


Assuntos
AMP Cíclico/metabolismo , Canais de Potássio/metabolismo , Transdução de Sinais , Regulação Alostérica , Animais , Comportamento Animal , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , AMP Cíclico/biossíntese , Humanos , Camundongos , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
J Proteome Res ; 20(9): 4318-4330, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342229

RESUMO

G-protein-coupled receptors (GPCRs) initiate intracellular signaling events through heterotrimeric G-protein α-subunits (Gα) and the ßγ-subunit dimer (Gßγ). In this study, we utilized mass spectrometry to identify novel regulators of Gßγ signaling in human cells. This prompted our characterization of KCTD2 and KCTD5, two related potassium channel tetramerization domain (KCTD) proteins that specifically recognize Gßγ. We demonstrated that these KCTD proteins are substrate adaptors for a multisubunit CUL3-RING ubiquitin ligase, in which a KCTD2-KCTD5 hetero-oligomer associates with CUL3 through KCTD5 subunits and recruits Gßγ through both KCTD proteins in response to G-protein activation. These KCTD proteins promote monoubiquitination of lysine-23 within Gß1/2in vitro and in HEK-293 cells. Depletion of these adaptors from cancer cell lines sharply impairs downstream signaling. Together, our studies suggest that a KCTD2-KCTD5-CUL3-RING E3 ligase recruits Gßγ in response to signaling, monoubiquitinates lysine-23 within Gß1/2, and regulates Gßγ effectors to modulate downstream signal transduction.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Ubiquitina-Proteína Ligases , Proteínas Culina/genética , Proteínas Culina/metabolismo , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Canais de Potássio , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Leukemia ; 33(8): 1881-1894, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30816328

RESUMO

In more than 30% of B-cell precursor acute lymphoblastic leukaemia (B-ALL), chromosome 21 sequence is overrepresented through aneuploidy or structural rearrangements, exemplified by intrachromosomal amplification of chromosome 21 (iAMP21). Although frequent, the mechanisms by which these abnormalities promote B-ALL remain obscure. Intriguingly, we found copy number neutral loss of heterozygosity (CN-LOH) of 12q was recurrent in iAMP21-ALL, but never observed in B-ALL without some form of chromosome 21 gain. As a consequence of CN-LOH 12q, mutations or deletions of the adaptor protein, SH2B3, were converted to homozygosity. In patients without CN-LOH 12q, bi-allelic abnormalities of SH2B3 occurred, but only in iAMP21-ALL, giving an overall incidence of 18% in this sub-type. Review of published data confirmed a tight association between overrepresentation of chromosome 21 and both CN-LOH 12q and SH2B3 abnormalities in B-ALL. Despite relatively small patient numbers, preliminary analysis linked 12q abnormalities to poor outcome in iAMP21-ALL (p = 0.03). Homology modelling of a leukaemia-associated SH2 domain mutation and in vitro analysis of patient-derived xenograft cells implicated the JAK/STAT pathway as one likely target for SH2B3 tumour suppressor activity in iAMP21-ALL.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 12 , Cromossomos Humanos Par 21 , Perda de Heterozigosidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas/genética , Proteínas Adaptadoras de Transdução de Sinal , Humanos , Interleucina-7/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Fator de Transcrição STAT5/fisiologia
4.
Biochemistry ; 51(25): 5091-104, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22650761

RESUMO

We have characterized the posttranslational methylation of Rps2, Rps3, and Rps27a, three small ribosomal subunit proteins in the yeast Saccharomyces cerevisiae, using mass spectrometry and amino acid analysis. We found that Rps2 is substoichiometrically modified at arginine-10 by the Rmt1 methyltransferase. We demonstrated that Rps3 is stoichiometrically modified by ω-monomethylation at arginine-146 by mass spectrometric and site-directed mutagenic analyses. Substitution of alanine for arginine at position 146 is associated with slow cell growth, suggesting that the amino acid identity at this site may influence ribosomal function and/or biogenesis. Analysis of the three-dimensional structure of Rps3 in S. cerevisiae shows that arginine-146 makes contacts with the small subunit rRNA. Screening of deletion mutants encoding potential yeast methyltransferases revealed that the loss of the YOR021C gene results in the absence of methylation of Rps3. We demonstrated that recombinant Yor021c catalyzes ω-monomethylarginine formation when incubated with S-adenosylmethionine and hypomethylated ribosomes prepared from a YOR021C deletion strain. Interestingly, Yor021c belongs to the family of SPOUT methyltransferases that, to date, have only been shown to modify RNA substrates. Our findings suggest a wider role for SPOUT methyltransferases in nature. Finally, we have demonstrated the presence of a stoichiometrically methylated cysteine residue at position 39 of Rps27a in a zinc-cysteine cluster. The discovery of these three novel sites of protein modification within the small ribosomal subunit will now allow for an analysis of their functional roles in translation and possibly other cellular processes.


Assuntos
Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Arginina/genética , Arginina/metabolismo , Cisteína/metabolismo , Metilação , Família Multigênica/fisiologia , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional/genética , Proteína-Arginina N-Metiltransferases/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Zinco/metabolismo
5.
J Biol Chem ; 286(21): 18405-13, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21460220

RESUMO

Modification of proteins of the translational apparatus is common in many organisms. In the yeast Saccharomyces cerevisiae, we provide evidence for the methylation of Rpl1ab, a well conserved protein forming the ribosomal L1 protuberance of the large subunit that functions in the release of tRNA from the exit site. We show that the intact mass of Rpl1ab is 14 Da larger than its calculated mass with the previously described loss of the initiator methionine residue and N-terminal acetylation. We determined that the increase in mass of yeast Rpl1ab is consistent with the addition of a methyl group to lysine 46 using top-down mass spectrometry. Lysine modification was confirmed by detecting (3)H-N-ε-monomethyllysine in hydrolysates of Rpl1ab purified from yeast cells radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. Mass spectrometric analysis of intact Rpl1ab purified from 37 deletion strains of known and putative yeast methyltransferases revealed that only the deletion of the YLR137W gene, encoding a seven-ß-strand methyltransferase, results in the loss of the +14-Da modification. We expressed the YLR137W gene as a His-tagged protein in Escherichia coli and showed that it catalyzes N-ε-monomethyllysine formation within Rpl1ab on ribosomes from the ΔYLR137W mutant strain lacking the methyltransferase activity but not from wild-type ribosomes. We also showed that the His-tagged protein could catalyze monomethyllysine formation on a 16-residue peptide corresponding to residues 38-53 of Rpl1ab. We propose that the YLR137W gene be given the standard name RKM5 (ribosomal lysine (K) methyltransferase 5). Orthologs of RKM5 are found only in fungal species, suggesting a role unique to their survival.


Assuntos
Proteínas Metiltransferases/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Escherichia coli/genética , Espectrometria de Massas , Metilação , Mutação , Proteínas Metiltransferases/química , Proteínas Metiltransferases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
J Biol Chem ; 285(48): 37598-606, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20864530

RESUMO

We have shown that Rpl3, a protein of the large ribosomal subunit from baker's yeast (Saccharomyces cerevisiae), is stoichiometrically monomethylated at position 243, producing a 3-methylhistidine residue. This conclusion is supported by top-down and bottom-up mass spectrometry of Rpl3, as well as by biochemical analysis of Rpl3 radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. The results show that a +14-Da modification occurs within the GTKKLPRKTHRGLRKVAC sequence of Rpl3. Using high-resolution cation-exchange chromatography and thin layer chromatography, we demonstrate that neither lysine nor arginine residues are methylated and that a 3-methylhistidine residue is present. Analysis of 37 deletion strains of known and putative methyltransferases revealed that only the deletion of the YIL110W gene, encoding a seven ß-strand methyltransferase, results in the loss of the +14-Da modification of Rpl3. We suggest that YIL110W encodes a protein histidine methyltransferase responsible for the modification of Rpl3 and potentially other yeast proteins, and now designate it Hpm1 (Histidine protein methyltransferase 1). Deletion of the YIL110W/HPM1 gene results in numerous phenotypes including some that may result from abnormal interactions between Rpl3 and the 25 S ribosomal RNA. This is the first report of a methylated histidine residue in yeast cells, and the first example of a gene required for protein histidine methylation in nature.


Assuntos
Metilistidinas/metabolismo , Metiltransferases/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Metiltransferases/química , Metiltransferases/genética , Dados de Sequência Molecular , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA