Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 30: 90-102, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37746243

RESUMO

High systemic doses of adeno-associated viruses (AAVs) have been associated with immune-related serious adverse events (SAEs). Although AAV was well tolerated in preclinical models, SAEs were observed in clinical trials, indicating the need for improved preclinical models to understand AAV-induced immune responses. Here, we show that mice dual-dosed with AAV9 at 4-week intervals better recapitulate aspects of human immunity to AAV. In the model, anti-AAV9 immunoglobulin G (IgGs) increased in a linear fashion between the first and second AAV administrations. Complement activation was only observed in the presence of high levels of both AAV and anti-AAV IgG. Myeloid-derived pro-inflammatory cytokines were significantly induced in the same pattern as complement activation, suggesting that myeloid cell activation to AAV may rely on the presence of both AAV and anti-AAV IgG complexes. Single-cell RNA sequencing of peripheral blood mononuclear cells confirmed that activated monocytes were a primary source of pro-inflammatory cytokines and chemokines, which were significantly increased after a second AAV9 exposure. The same activated monocyte clusters expressed both Fcγ and complement receptors, suggesting that anti-AAV-mediated activation of myeloid cells through Fcγ receptors and/or complement receptors is one mechanism by which anti-AAV antigen complexes may prime antigen-presenting cells and amplify downstream immunity.

2.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36612255

RESUMO

Establishment of clinically annotated, molecularly characterized, patient-derived xenografts (PDXs) from treatment-naïve and pretreated patients provides a platform to test precision genomics-guided therapies. An integrated multi-OMICS pipeline was developed to identify cancer-associated pathways and evaluate stability of molecular signatures in a panel of pediatric and AYA PDXs following serial passaging in mice. Original solid tumor samples and their corresponding PDXs were evaluated by whole-genome sequencing, RNA-seq, immunoblotting, pathway enrichment analyses, and the drug−gene interaction database to identify as well as cross-validate actionable targets in patients with sarcomas or Wilms tumors. While some divergence between original tumor and the respective PDX was evident, majority of alterations were not functionally impactful, and oncogenic pathway activation was maintained following serial passaging. CDK4/6 and BETs were prioritized as biomarkers of therapeutic response in osteosarcoma PDXs with pertinent molecular signatures. Inhibition of CDK4/6 or BETs decreased osteosarcoma PDX growth (two-way ANOVA, p < 0.05) confirming mechanistic involvement in growth. Linking patient treatment history with molecular and efficacy data in PDX will provide a strong rationale for targeted therapy and improve our understanding of which therapy is most beneficial in patients at diagnosis and in those already exposed to therapy.

3.
Cancers (Basel) ; 12(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859084

RESUMO

Osteosarcoma (OS) patients exhibit poor overall survival, partly due to copy number variations (CNVs) resulting in dysregulated gene expression and therapeutic resistance. To identify actionable prognostic signatures of poor overall survival, we employed a systems biology approach using public databases to integrate CNVs, gene expression, and survival outcomes in pediatric, adolescent, and young adult OS patients. Chromosome 8 was a hotspot for poor prognostic signatures. The MYC-RAD21 copy number gain (8q24) correlated with increased gene expression and poor overall survival in 90% of the patients (n = 85). MYC and RAD21 play a role in replication-stress, which is a therapeutically actionable network. We prioritized replication-stress regulators, bromodomain and extra-terminal proteins (BETs), and CHK1, in order to test the hypothesis that the inhibition of BET + CHK1 in MYC-RAD21+ pediatric OS models would be efficacious and safe. We demonstrate that MYC-RAD21+ pediatric OS cell lines were sensitive to the inhibition of BET (BETi) and CHK1 (CHK1i) at clinically achievable concentrations. While the potentiation of CHK1i-mediated effects by BETi was BET-BRD4-dependent, MYC expression was BET-BRD4-independent. In MYC-RAD21+ pediatric OS xenografts, BETi + CHK1i significantly decreased tumor growth, increased survival, and was well tolerated. Therefore, targeting replication stress is a promising strategy to pursue as a therapeutic option for this devastating disease.

4.
Nat Cell Biol ; 20(1): 46-57, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29255171

RESUMO

Human pluripotent stem cells (hPSCs) can be directed to differentiate into skeletal muscle progenitor cells (SMPCs). However, the myogenicity of hPSC-SMPCs relative to human fetal or adult satellite cells remains unclear. We observed that hPSC-SMPCs derived by directed differentiation are less functional in vitro and in vivo compared to human satellite cells. Using RNA sequencing, we found that the cell surface receptors ERBB3 and NGFR demarcate myogenic populations, including PAX7 progenitors in human fetal development and hPSC-SMPCs. We demonstrated that hPSC skeletal muscle is immature, but inhibition of transforming growth factor-ß signalling during differentiation improved fusion efficiency, ultrastructural organization and the expression of adult myosins. This enrichment and maturation strategy restored dystrophin in hundreds of dystrophin-deficient myofibres after engraftment of CRISPR-Cas9-corrected Duchenne muscular dystrophy human induced pluripotent stem cell-SMPCs. The work provides an in-depth characterization of human myogenesis, and identifies candidates that improve the in vivo myogenic potential of hPSC-SMPCs to levels that are equal to directly isolated human fetal muscle cells.


Assuntos
Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/genética , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/genética , Receptor ErbB-3/genética , Receptores de Fator de Crescimento Neural/genética , Adulto , Idoso , Sistemas CRISPR-Cas , Diferenciação Celular , Distrofina/genética , Distrofina/metabolismo , Feminino , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/citologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Mioblastos/citologia , Miosinas/genética , Miosinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Receptor ErbB-3/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
5.
Mol Ther ; 24(9): 1561-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27406980

RESUMO

Targeted genome editing technology can correct the sickle cell disease mutation of the ß-globin gene in hematopoietic stem cells. This correction supports production of red blood cells that synthesize normal hemoglobin proteins. Here, we demonstrate that Transcription Activator-Like Effector Nucleases (TALENs) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system can target DNA sequences around the sickle-cell mutation in the ß-globin gene for site-specific cleavage and facilitate precise correction when a homologous donor template is codelivered. Several pairs of TALENs and multiple CRISPR guide RNAs were evaluated for both on-target and off-target cleavage rates. Delivery of the CRISPR/Cas9 components to CD34+ cells led to over 18% gene modification in vitro. Additionally, we demonstrate the correction of the sickle cell disease mutation in bone marrow derived CD34+ hematopoietic stem and progenitor cells from sickle cell disease patients, leading to the production of wild-type hemoglobin. These results demonstrate correction of the sickle mutation in patient-derived CD34+ cells using CRISPR/Cas9 technology.


Assuntos
Anemia Falciforme/genética , Sistemas CRISPR-Cas , Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , Mutação , Reparo Gênico Alvo-Dirigido , Globinas beta/genética , Anemia Falciforme/terapia , Sequência de Bases , Linhagem Celular , Clivagem do DNA , Marcação de Genes , Loci Gênicos , Humanos , Ligação Proteica , RNA Guia de Cinetoplastídeos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
6.
Mol Ther Nucleic Acids ; 3: e211, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25405468

RESUMO

Antisense oligonucleotides (AONs) used to reframe dystrophin mRNA transcripts for Duchenne muscular dystrophy (DMD) patients are tested in clinical trials. Here, AONs are administered subcutaneously and intravenously, while the less invasive oral route would be preferred. Oral delivery of encapsulated AONs supplemented with a permeation enhancer, sodium caprate, has been successfully used to target tumor necrosis factor (TNF)-α expression in liver. To test the feasibility of orally delivered AONs for DMD, we applied 2'-O-methyl phosphorothioate AONs (with or without sodium caprate supplementation) directly to the intestine of mdx mice and compared pharmacokinetics and -dynamics with intravenous, intraperitoneal, and subcutaneous delivery. Intestinally infused AONs were taken up, but resulted in lower plasma levels compared to other delivery routes, although bioavailability could be largely improved by supplementation of sodium caprate. After intestinal infusion, AON levels in all tissues were lower than for other administration routes, as were the ratios of target versus nontarget organ levels, except for diaphragm and heart where comparable levels and ratios were observed. For each administration route, low levels of exon skipping in triceps was observed 3 hours post-AON administration. These data suggest that oral administration of naked 2'-O-methyl phosphorothioate AONs may be feasible, but only when high AON concentrations are used in combination with sodium caprate.

7.
Pharm Res ; 27(5): 841-54, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20224990

RESUMO

PURPOSE: Interleukin-10 (IL-10) is an anti-inflammatory molecule that has achieved interest as a therapeutic for neuropathic pain. In this work, the potential of plasmid DNA-encoding IL-10 (pDNA-IL-10) slowly released from biodegradable microparticles to provide long-term pain relief in an animal model of neuropathic pain was investigated. METHODS: PLGA microparticles encapsulating pDNA-IL-10 were developed and assessed both in vitro and in vivo. RESULTS: In vitro, pDNA containing microparticles activated macrophages, enhanced the production of nitric oxide, and increased the production of IL-10 protein relative to levels achieved with unencapsulated pDNA-IL-10. In vivo, intrathecally administered microparticles embedded in meningeal tissue, induced phagocytic cell recruitment to the cerebrospinal fluid, and relieved neuropathic pain for greater than 74 days following a single intrathecal administration, a feat not achieved with unencapsulated pDNA. Therapeutic effects of microparticle-delivered pDNA-IL-10 were blocked in the presence of IL-10-neutralizing antibody, and elevated levels of plasmid-derived IL-10 were detected in tissues for a prolonged time period post-injection (>28 days), demonstrating that therapeutic effects are dependent on IL-10 protein production. CONCLUSIONS: These studies demonstrate that microparticle encapsulation significantly enhances the potency of intrathecally administered pDNA, which may be extended to treat other disorders that require intrathecal gene therapy.


Assuntos
DNA/administração & dosagem , DNA/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Interleucina-10/genética , Doenças do Sistema Nervoso Periférico/terapia , Plasmídeos/genética , Animais , Comportamento Animal/fisiologia , Células Cultivadas , Imuno-Histoquímica , Injeções Espinhais , Interleucina-10/biossíntese , Ácido Láctico , Macrófagos/metabolismo , Masculino , Nanopartículas , Óxido Nítrico/metabolismo , Tamanho da Partícula , Doenças do Sistema Nervoso Periférico/líquido cefalorraquidiano , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA