Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 81(3): 599-613.e8, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33373584

RESUMO

RNA helicases and E3 ubiquitin ligases mediate many critical functions in cells, but their actions have largely been studied in distinct biological contexts. Here, we uncover evolutionarily conserved rules of engagement between RNA helicases and tripartite motif (TRIM) E3 ligases that lead to their functional coordination in vertebrate innate immunity. Using cryoelectron microscopy and biochemistry, we show that RIG-I-like receptors (RLRs), viral RNA receptors with helicase domains, interact with their cognate TRIM/TRIM-like E3 ligases through similar epitopes in the helicase domains. Their interactions are avidity driven, restricting the actions of TRIM/TRIM-like proteins and consequent immune activation to RLR multimers. Mass spectrometry and phylogeny-guided biochemical analyses further reveal that similar rules of engagement may apply to diverse RNA helicases and TRIM/TRIM-like proteins. Our analyses suggest not only conserved substrates for TRIM proteins but also, unexpectedly, deep evolutionary connections between TRIM proteins and RNA helicases, linking ubiquitin and RNA biology throughout animal evolution.


Assuntos
Proteína DEAD-box 58/metabolismo , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/metabolismo , Receptores Imunológicos/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Microscopia Crioeletrônica , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/ultraestrutura , Epitopos , Evolução Molecular , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/ultraestrutura , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Receptores Imunológicos/genética , Receptores Imunológicos/ultraestrutura , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/ultraestrutura , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/ultraestrutura
2.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238588

RESUMO

Tetherin/BST-2 is an antiviral protein that blocks the release of enveloped viral particles by linking them to the membrane of producing cells. At first, BST-2 genes were described only in humans and other mammals. Recent work identified BST-2 orthologs in nonmammalian vertebrates, including birds. Here, we identify the BST-2 sequence in domestic chicken (Gallus gallus) for the first time and demonstrate its activity against avian sarcoma and leukosis virus (ASLV). We generated a BST-2 knockout in chicken cells and showed that BST-2 is a major determinant of an interferon-induced block of ASLV release. Ectopic expression of chicken BST-2 blocks the release of ASLV in chicken cells and of human immunodeficiency virus type 1 (HIV-1) in human cells. Using metabolic labeling and pulse-chase analysis of HIV-1 Gag proteins, we verified that chicken BST-2 blocks the virus at the release stage. Furthermore, we describe BST-2 orthologs in multiple avian species from 12 avian orders. Previously, some of these species were reported to lack BST-2, highlighting the difficulty of identifying sequences of this extremely variable gene. We analyzed BST-2 genes in the avian orders Galliformes and Passeriformes and showed that they evolve under positive selection. This indicates that avian BST-2 is involved in host-virus evolutionary arms races and suggests that BST-2 antagonists exist in some avian viruses. In summary, we show that chicken BST-2 has the potential to act as a restriction factor against ASLV. Characterizing the interaction of avian BST-2 with avian viruses is important in understanding innate antiviral defenses in birds.IMPORTANCE Birds are important hosts of viruses that have the potential to cause zoonotic infections in humans. However, only a few antiviral genes (called viral restriction factors) have been described in birds, mostly because birds lack counterparts of highly studied mammalian restriction factors. Tetherin/BST-2 is a restriction factor, originally described in humans, that blocks the release of newly formed virus particles from infected cells. Recent work identified BST-2 in nonmammalian vertebrate species, including birds. Here, we report the BST-2 sequence in domestic chicken and describe its antiviral activity against a prototypical avian retrovirus, avian sarcoma and leukosis virus (ASLV). We also identify BST-2 genes in multiple avian species and show that they evolve rapidly in birds, which is an important indication of their relevance for antiviral defense. Analysis of avian BST-2 genes will shed light on defense mechanisms against avian viral pathogens.


Assuntos
Proteínas Aviárias/imunologia , Vírus do Sarcoma Aviário/imunologia , Antígeno 2 do Estroma da Médula Óssea/imunologia , Evolução Molecular , Galliformes/imunologia , Sarcoma Aviário/imunologia , Sequência de Aminoácidos , Animais , Proteínas Aviárias/genética , Vírus do Sarcoma Aviário/genética , Vírus do Sarcoma Aviário/patogenicidade , Antígeno 2 do Estroma da Médula Óssea/genética , Linhagem Celular , Fibroblastos/imunologia , Fibroblastos/virologia , Galliformes/genética , Galliformes/virologia , Regulação da Expressão Gênica , Células HEK293 , HIV-1/genética , HIV-1/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Passeriformes/genética , Passeriformes/imunologia , Passeriformes/virologia , Sarcoma Aviário/genética , Sarcoma Aviário/virologia , Seleção Genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Liberação de Vírus , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
3.
PLoS Biol ; 17(10): e3000181, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31574080

RESUMO

Antagonistic interactions drive host-virus evolutionary arms races, which often manifest as recurrent amino acid changes (i.e., positive selection) at their protein-protein interaction interfaces. Here, we investigated whether combinatorial mutagenesis of positions under positive selection in a host antiviral protein could enhance its restrictive properties. We tested approximately 700 variants of human MxA, generated by combinatorial mutagenesis, for their ability to restrict Thogotovirus (THOV). We identified MxA super-restrictors with increased binding to the THOV nucleoprotein (NP) target protein and 10-fold higher anti-THOV restriction relative to wild-type human MxA, the most potent naturally occurring anti-THOV restrictor identified. Our findings reveal a means to elicit super-restrictor antiviral proteins by leveraging signatures of positive selection. Although some MxA super-restrictors of THOV were impaired in their restriction of H5N1 influenza A virus (IAV), other super-restrictor variants increased THOV restriction without impairment of IAV restriction. Thus, broadly acting antiviral proteins such as MxA mitigate breadth-versus-specificity trade-offs that could otherwise constrain their adaptive landscape.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Proteínas de Resistência a Myxovirus/genética , Nucleoproteínas/genética , Thogotovirus/genética , Proteínas Virais/genética , Motivos de Aminoácidos , Linhagem Celular Tumoral , Evolução Molecular , Regulação da Expressão Gênica , Biblioteca Gênica , Células HEK293 , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Especificidade de Hospedeiro , Humanos , Virus da Influenza A Subtipo H5N1/metabolismo , Mutagênese , Proteínas de Resistência a Myxovirus/imunologia , Proteínas de Resistência a Myxovirus/metabolismo , Nucleoproteínas/metabolismo , Transdução de Sinais , Thogotovirus/metabolismo , Proteínas Virais/metabolismo
4.
PLoS Genet ; 10(5): e1004403, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24875882

RESUMO

Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic 'arms races' with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in 'housekeeping' functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our evolutionary analyses suggest that addition, recognition and removal of ADP-ribosylation is a critical, underappreciated currency in host-virus conflicts.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Evolução Molecular , Imunidade Inata/genética , Vírus/patogenicidade , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Adenosina Difosfato Ribose/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Vírus/genética
5.
Skelet Muscle ; 2(1): 7, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22541669

RESUMO

BACKGROUND: Similar to replicating myoblasts, many rhabdomyosarcoma cells express the myogenic determination gene MyoD. In contrast to myoblasts, rhabdomyosarcoma cells do not make the transition from a regulative growth phase to terminal differentiation. Previously we demonstrated that the forced expression of MyoD with its E-protein dimerization partner was sufficient to induce differentiation and suppress multiple growth-promoting genes, suggesting that the dimer was targeting a switch that regulated the transition from growth to differentiation. Our data also suggested that a balance between various inhibitory transcription factors and MyoD activity kept rhabdomyosarcomas trapped in a proliferative state. METHODS: Potential myogenic co-factors were tested for their ability to drive differentiation in rhabdomyosarcoma cell culture models, and their relation to MyoD activity determined through molecular biological experiments. RESULTS: Modulation of the transcription factors RUNX1 and ZNF238 can induce differentiation in rhabdomyosarcoma cells and their activity is integrated, at least in part, through the activation of miR-206, which acts as a genetic switch to transition the cell from a proliferative growth phase to differentiation. The inhibitory transcription factor MSC also plays a role in controlling miR-206, appearing to function by occluding a binding site for MyoD in the miR-206 promoter. CONCLUSIONS: These findings support a network model composed of coupled regulatory circuits with miR-206 functioning as a switch regulating the transition from one stable state (growth) to another (differentiation).

6.
Cancer Res ; 69(19): 7793-802, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19773449

RESUMO

Androgen deprivation is the mainstay of therapy for progressive prostate cancer. Despite initial and dramatic tumor inhibition, most men eventually fail therapy and die of metastatic castration-resistant (CR) disease. Here, we characterize the profound degree of genomic alteration found in CR tumors using array comparative genomic hybridization (array CGH), gene expression arrays, and fluorescence in situ hybridization (FISH). Bycluster analysis, we show that the similarity of the genomic profiles from primary and metastatic tumors is driven by the patient. Using data adjusted for this similarity, we identify numerous high-frequency alterations in the CR tumors, such as 8p loss and chromosome 7 and 8q gain. By integrating array CGH and expression array data, we reveal genes whose correlated values suggest they are relevant to prostate cancer biology. We find alterations that are significantly associated with the metastases of specific organ sites, and others with CR tumors versus the tumors of patients with localized prostate cancer not treated with androgen deprivation. Within the high-frequency sites of loss in CR metastases, we find an overrepresentation of genes involved in cellular lipid metabolism, including PTEN. Finally, using FISH, we verify the presence of a gene fusion between TMPRSS2 and ERG suggested by chromosome 21 deletions detected by array CGH. We find the fusion in 54% of our CR tumors, and 81% of the fusion-positive tumors contain cells with multiple copies of the fusion. Our investigation lays the foundation for a better understanding of and possible therapeutic targets for CR disease, the poorly responsive and final stage of prostate cancer.


Assuntos
Aberrações Cromossômicas , Neoplasias da Próstata/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/secundário , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Hibridização Genômica Comparativa , Dosagem de Genes , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Orquiectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia
7.
Cancer Res ; 68(14): 5599-608, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18632612

RESUMO

Disseminated epithelial cells can be isolated from the bone marrow of a far greater fraction of prostate-cancer patients than the fraction of patients who progress to metastatic disease. To provide a better understanding of these cells, we have characterized their genomic alterations. We first present an array comparative genomic hybridization method capable of detecting genomic changes in the small number of disseminated cells (10-20) that can typically be obtained from bone marrow aspirates of prostate-cancer patients. We show multiple regions of copy-number change, including alterations common in prostate cancer, such as 8p loss, 8q gain, and gain encompassing the androgen-receptor gene on Xq, in the disseminated cell pools from 11 metastatic patients. We found fewer and less striking genomic alterations in the 48 pools of disseminated cells from patients with organ-confined disease. However, we identify changes shared by these samples with their corresponding primary tumors and prostate-cancer alterations reported in the literature, evidence that these cells, like those in advanced disease, are disseminated tumor cells (DTC). We also show that DTCs from patients with advanced and localized disease share several abnormalities, including losses containing cell-adhesion genes and alterations reported to associate with progressive disease. These shared alterations might confer the capability to disseminate or establish secondary disease. Overall, the spectrum of genomic deviations is evidence for metastatic capacity in advanced-disease DTCs and for variation in that capacity in DTCs from localized disease. Our analysis lays the foundation for elucidation of the relationship between DTC genomic alterations and progressive prostate cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genoma , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Adesão Celular , Linhagem Celular Tumoral , Mapeamento Cromossômico , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Modelos Biológicos , Metástase Neoplásica , Hibridização de Ácido Nucleico
8.
Hum Genet ; 111(6): 555-65, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12436247

RESUMO

Many mRNAs carrying mutations that are predicted to encode a truncated protein are subject to a mechanism known as nonsense-mediated mRNA decay (NMD), which results in reduced levels of mutant transcript. Tuberous sclerosis (TSC), an autosomal dominant neurocutaneous disorder with mutations in either of two genes, TSC1 or TSC2, requires comprehensive screening of both genes for molecular diagnosis. Virtually all TSC1 mutations are predicted to truncate the protein product. Coding and newly identified 3' untranslated region polymorphisms in TSC1 were used to develop a transcript imbalance assay to investigate TSC1 transcript levels in patients. This approach allowed the correct identification of six out of seven TSC1 patients tested blind from a panel of TSC1 and TSC2 patients, with no false positives. The extent of NMD in TSC1 was found to correlate with each individual mutation regardless of intra-familial variation in clinical features and with no strong evidence for positional bias. NMD in TSC1 was more pronounced in cultured cells than in RNA prepared directly from peripheral lymphocytes (in which novel splicing of exon 5 was observed). The advent of a dense SNP map of transcribed regions of the genome may allow a similar transcript imbalance assay in the assessment of candidate genes for diseases whose causes are still unknown.


Assuntos
Códon sem Sentido , Proteínas/genética , RNA/genética , Regiões 3' não Traduzidas , Alelos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Feminino , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA