Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement (Amst) ; 16(2): e12603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800123

RESUMO

INTRODUCTION: Brain insulin resistance and deficiency is a consistent feature of Alzheimer's disease (AD). Insulin resistance can be mediated by the surface expression of the insulin receptor (IR). Cleavage of the IR generates the soluble IR (sIR). METHODS: We measured the levels of sIR present in cerebrospinal fluid (CSF) from individuals along the AD diagnostic spectrum from two cohorts: Seattle (n = 58) and the Consortium for the Early Identification of Alzheimer's Disease-Quebec (CIMA-Q; n = 61). We further investigated the brain cellular contribution for sIR using human cell lines. RESULTS: CSF sIR levels were not statistically different in AD. CSF sIR and amyloid beta (Aß)42 and Aß40 levels significantly correlated as well as CSF sIR and cognition in the CIMA-Q cohort. Human neurons expressing the amyloid precursor protein "Swedish" mutation generated significantly greater sIR and human astrocytes were also able to release sIR in response to both an inflammatory and insulin stimulus. DISCUSSION: These data support further investigation into the generation and role of sIR in AD. Highlights: Cerebrospinal fluid (CSF) soluble insulin receptor (sIR) levels positively correlate with amyloid beta (Aß)42 and Aß40.CSF sIR levels negatively correlate with cognitive performance (Montreal Cognitive Assessment score).CSF sIR levels in humans remain similar across Alzheimer's disease diagnostic groups.Neurons derived from humans with the "Swedish" mutation in which Aß42 is increased generate increased levels of sIR.Human astrocytes can also produce sIR and generation is stimulated by tumor necrosis factor α and insulin.

2.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352381

RESUMO

Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity or response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse neurons and astrocytes in ex vivo brain slices. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress, G-protein coupled receptor (GPCR)-induced cell signaling, and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aß-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for diseases associated with oxidative stress, such as cancer, neurodegenerative disorders, and cardiovascular diseases.

3.
Cell Rep ; 42(8): 112994, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37611586

RESUMO

SORL1 is implicated in the pathogenesis of Alzheimer's disease (AD) through genetic studies. To interrogate the roles of SORL1 in human brain cells, SORL1-null induced pluripotent stem cells (iPSCs) were differentiated to neuron, astrocyte, microglial, and endothelial cell fates. Loss of SORL1 leads to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. SORL1 loss induces a neuron-specific reduction in apolipoprotein E (APOE) and clusterin (CLU) and altered lipid profiles. Analyses of iPSCs derived from a large cohort reveal a neuron-specific association between SORL1, APOE, and CLU levels, a finding validated in postmortem brain. Enhancement of retromer-mediated trafficking rescues tau phenotypes observed in SORL1-null neurons but does not rescue APOE levels. Pathway analyses implicate transforming growth factor ß (TGF-ß)/SMAD signaling in SORL1 function, and modulating SMAD signaling in neurons alters APOE RNA levels in a SORL1-dependent manner. Taken together, these data provide a mechanistic link between strong genetic risk factors for AD.


Assuntos
Doença de Alzheimer , Clusterina , Humanos , Clusterina/genética , Doença de Alzheimer/genética , Neurônios , Processos de Crescimento Celular , Apolipoproteínas E/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras
4.
Ann Palliat Med ; 10(3): 3563-3574, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32648455

RESUMO

BACKGROUND: Assisted dying (AD) is currently of wide interest due to legislative change. Its relationship to other end-of-life practices such as palliative sedation (PS) is the subject of ongoing debate. The aim of this article is to describe the perspectives of a group of New Zealanders with life-limiting illness, who want or would consider AD, on the provision of end of life services, including assisted death, withdrawal of lifeprolonging treatment and symptom management with opioids or PS. METHODS: We recruited 14 people with life-limiting illness and life expectancy of less than a year. Their mean age was 61 (range, 34-82) years and half were enrolled in Hospice. An additional six family members were also interviewed and included in analysis. We asked them about why they would consider AD if it was available. Interview transcripts were inductively analyzed consistent with thematic analysis. We compared the findings to prevailing ethical frameworks. RESULTS: Most of the participants viewed current palliative care practices, such as pain relief with opioids and symptom management with PS, as hastening death, in contrast to some medical research which concludes that proportional therapeutic doses do not hasten death. Some participants did not agree with the 'doctrine of double effect' ('DDE') and saw such practices as 'slow euthanasia' and 'covert euthanasia'. They implied such practices were performed without patient consent, though they did not conceive of this as murder. Participants asserted that active and passive practices for ending life were morally equivalent, and preferred to choose the time of death over other legal means for death. CONCLUSIONS: This article contributes to what is known about how patients perceive end-of-life practices that potentially hasten death. There is a divide in what medical ethics and most health professionals and what some patients consider active hastening death. Participants' perspective was consistent with a consequentialist framework whereas deontology often guides medical ethics at the end of life. Participants' challenge to the interpretation of legal end-of-life practices as AD represents an epistemic contest to the foundation of medical knowledge, authority and ethics and therefore carries implications for preferences in care, communication and palliative care practice.


Assuntos
Eutanásia , Suicídio Assistido , Assistência Terminal , Morte , Humanos , Pessoa de Meia-Idade , Cuidados Paliativos , Pesquisa Qualitativa
5.
Nat Genet ; 51(12): 1691-1701, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740836

RESUMO

In the mammalian genome, the clustered protocadherin (cPCDH) locus provides a paradigm for stochastic gene expression with the potential to generate a unique cPCDH combination in every neuron. Here we report a chromatin-based mechanism that emerges during the transition from the naive to the primed states of cell pluripotency and reduces, by orders of magnitude, the combinatorial potential in the human cPCDH locus. This mechanism selectively increases the frequency of stochastic selection of a small subset of cPCDH genes after neuronal differentiation in monolayers, 10-month-old cortical organoids and engrafted cells in the spinal cords of rats. Signs of these frequent selections can be observed in the brain throughout fetal development and disappear after birth, except in conditions of delayed maturation such as Down's syndrome. We therefore propose that a pattern of limited cPCDH-gene expression diversity is maintained while human neurons still retain fetal-like levels of maturation.


Assuntos
Caderinas/genética , Cromatina/genética , Síndrome de Down/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/fisiologia , Adulto , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular , Linhagem Celular , Síndrome de Down/genética , Regulação da Expressão Gênica , Histonas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Pessoa de Meia-Idade , Neurônios/citologia , Regiões Promotoras Genéticas , Ratos , Análise de Célula Única , Medula Espinal/citologia , Medula Espinal/transplante , Transplante Heterólogo
6.
J Neuropathol Exp Neurol ; 77(5): 353-360, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29474672

RESUMO

Patient-specific stem cell technology from skin and other biopsy sources has transformed in vitro models of neurodegenerative disease, permitting interrogation of the effects of complex human genetics on neurotoxicity. However, the neuropathologic changes that underlie cognitive and behavioral phenotypes can only be determined at autopsy. To better correlate the biology of derived neurons with age-related and neurodegenerative changes, we generated leptomeningeal cell lines from well-characterized research subjects that have undergone comprehensive postmortem neuropathologic examinations. In a series of proof of principle experiments, we reprogrammed autopsy leptomeningeal cell lines to human-induced pluripotent stem cells (hiPSCs) and differentiated these into neurons. We show that leptomeningeal-derived hiPSC lines can be generated from fresh and frozen leptomeninges, are pluripotent, and retain the karyotype of the starting cell population. Additionally, neurons differentiated from these hiPSCs are functional and produce measurable Alzheimer disease-relevant analytes (Aß and Tau). Finally, we used direct conversion protocols to transdifferentiate leptomeningeal cells to neurons. These resources allow the generation of in vitro models to test mechanistic hypotheses as well as diagnostic and therapeutic strategies in association with neuropathology, clinical and cognitive data, and biomarker studies, aiding in the study of late-onset Alzheimer disease and other age-related neurodegenerative diseases.


Assuntos
Autopsia , Células-Tronco Pluripotentes Induzidas/fisiologia , Meninges/citologia , Doenças do Sistema Nervoso/patologia , Neurônios/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Diferenciação Celular , Linhagem Celular , Corpos Embrioides , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Neurônios/metabolismo , Reação em Cadeia da Polimerase , Proteínas tau/metabolismo
7.
Nat Neurosci ; 17(9): 1180-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108912

RESUMO

Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron-like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis.


Assuntos
Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Transtornos Musculares Atróficos/patologia , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Animais , Reprogramação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Transtornos Musculares Atróficos/metabolismo , Fagossomos/fisiologia
8.
Nature ; 471(7336): 63-7, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21368825

RESUMO

Defined transcription factors can induce epigenetic reprogramming of adult mammalian cells into induced pluripotent stem cells. Although DNA factors are integrated during some reprogramming methods, it is unknown whether the genome remains unchanged at the single nucleotide level. Here we show that 22 human induced pluripotent stem (hiPS) cell lines reprogrammed using five different methods each contained an average of five protein-coding point mutations in the regions sampled (an estimated six protein-coding point mutations per exome). The majority of these mutations were non-synonymous, nonsense or splice variants, and were enriched in genes mutated or having causative effects in cancers. At least half of these reprogramming-associated mutations pre-existed in fibroblast progenitors at low frequencies, whereas the rest occurred during or after reprogramming. Thus, hiPS cells acquire genetic modifications in addition to epigenetic modifications. Extensive genetic screening should become a standard procedure to ensure hiPS cell safety before clinical use.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutagênese/genética , Mutação Puntual/genética , Células Cultivadas , Análise Mutacional de DNA , Epistasia Genética/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Fases de Leitura Aberta/genética
9.
Mayo Clin Proc ; 84(2): 134-8, 2009 02.
Artigo em Inglês | MEDLINE | ID: mdl-19181647

RESUMO

OBJECTIVE: To conduct clinical and molecular genetic analyses of the members of an extended family in Central Indiana with a high prevalence of restless legs syndrome (RLS). PARTICIPANTS AND METHODS: From February 1, 2006, through August 31, 2008, we collected data from members of this family, which is of English descent. Genealogical methods were used to expand the family tree, and family members were screened with an RLS questionnaire. Telephone interviews and personal examinations were performed at Mayo Clinic and during a field trip to Central Indiana. Blood samples were collected for molecular genetic analysis. A follow-up telephone interview was conducted 1 year later. RESULTS: The family tree spans 7 generations with 88 living members, 30 of whom meet the criteria for diagnosis of RLS established by the International Restless Legs Syndrome Study Group. Three affected family members also have Parkinson disease or essential tremor. The mode of RLS inheritance is compatible with an autosomal dominant pattern. The affected family members do not exhibit linkage to the 5 known RLS loci or mutations in the RLS susceptibility genes MEIS1 and BTBD9. CONCLUSION: Of 88 members of this single extended family in Central Indiana, 30 were diagnosed as having RLS. Because our analysis shows that the disease is not linked to any of the known RLS loci or risk-associated genes, we postulate that members of this family may carry a gene mutation in a novel genetic locus.


Assuntos
Linhagem , Síndrome das Pernas Inquietas/genética , Adolescente , Adulto , Idoso , Anemia/complicações , Criança , Pré-Escolar , Agonistas de Dopamina/uso terapêutico , Tremor Essencial/complicações , Feminino , Fibromialgia/complicações , Humanos , Indiana , Entrevistas como Assunto , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doenças do Sistema Nervoso Periférico/complicações , Reação em Cadeia da Polimerase , Gravidez , Complicações na Gravidez , Síndrome das Pernas Inquietas/complicações , Síndrome das Pernas Inquietas/tratamento farmacológico , Síndromes da Apneia do Sono/complicações , Inquéritos e Questionários , Adulto Jovem
10.
J Neurosci ; 29(7): 1987-97, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19228953

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by a polyglutamine (polyQ) repeat expansion in the androgen receptor (AR). PolyQ-AR neurotoxicity may involve generation of an N-terminal truncation fragment, as such peptides occur in SBMA patients and mouse models. To elucidate the basis of SBMA, we expressed N-terminal truncated AR in motor neuron-derived cells and primary cortical neurons. Accumulation of polyQ-AR truncation fragments in the cytosol resulted in neurodegeneration and apoptotic, caspase-dependent cell death. Using primary neurons from mice transgenic or deficient for apoptosis-related genes, we determined that polyQ-AR apoptotic activation is fully dependent on Bax. Jun N-terminal kinase (JNK) was required for apoptotic pathway activation through phosphorylation of c-Jun. Expression of polyQ-AR in DP5/Hrk null neurons yielded significant protection against apoptotic activation, but absence of Bim did not provide protection, apparently due to compensatory upregulation of DP5/Hrk or other BH3-only proteins. Misfolded AR protein in the cytosol thus initiates a cascade of events beginning with JNK and culminating in Bax-dependent, intrinsic pathway activation, mediated in part by DP5/Hrk. As apoptotic mediators are candidates for toxic fragment generation and other cellular processes linked to neuron dysfunction, delineation of the apoptotic activation pathway induced by polyQ-expanded AR may shed light on the pathogenic cascade in SBMA and other motor neuron diseases.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/genética , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Proteína X Associada a bcl-2/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Células Cultivadas , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Receptores Androgênicos/química , Receptores Androgênicos/genética , Transdução de Sinais/genética
11.
J Biol Chem ; 282(41): 30150-60, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17646170

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a polyglutamine (polyQ) disorder characterized by specific degeneration of cerebellar, brainstem, and retinal neurons. Although they share little sequence homology, proteins implicated in polyQ disorders have common properties beyond their characteristic polyQ tract. These include the production of proteolytic fragments, nuclear accumulation, and processing by caspases. Here we report that ataxin-7 is cleaved by caspase-7, and we map two putative caspase-7 cleavage sites to Asp residues at positions 266 and 344 of the ataxin-7 protein. Site-directed mutagenesis of these two caspase-7 cleavage sites in the polyQ-expanded form of ataxin-7 produces an ataxin-7 D266N/D344N protein that is resistant to caspase cleavage. Although ataxin-7 displays toxicity, forms nuclear aggregates, and represses transcription in human embryonic kidney 293T cells in a polyQ length-dependent manner, expression of the non-cleavable D266N/D344N form of polyQ-expanded ataxin-7 attenuated cell death, aggregate formation, and transcriptional interference. Expression of the caspase-7 truncation product of ataxin-7-69Q or -92Q, which removes the putative nuclear export signal and nuclear localization signals of ataxin-7, showed increased cellular toxicity. We also detected N-terminal polyQ-expanded ataxin-7 cleavage products in SCA7 transgenic mice similar in size to those generated by caspase-7 cleavage. In a SCA7 transgenic mouse model, recruitment of caspase-7 into the nucleus by polyQ-expanded ataxin-7 correlated with its activation. Our results, thus, suggest that proteolytic processing of ataxin-7 by caspase-7 may contribute to SCA7 disease pathogenesis.


Assuntos
Caspase 7/metabolismo , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Transcrição Gênica , Animais , Ataxina-7 , Células COS , Linhagem Celular , Cerebelo/metabolismo , Chlorocebus aethiops , Humanos , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/fisiologia , Peptídeos/metabolismo
12.
Hum Mol Genet ; 16(13): 1593-603, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17470458

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a progressive neurodegenerative disease caused by an expansion of the polyglutamine tract in the androgen receptor (AR). Here, we investigated the regulation of AR phosphorylation in order to understand factors that may modify SBMA disease progression. We show that expanded polyglutamine AR is phosphorylated by Akt. Substitution of the AR at two Akt consensus sites, S215 and S792, with aspartate, which mimics phosphorylation, reduces ligand binding, ligand-dependent nuclear translocation, transcriptional activation and toxicity of expanded polyglutamine AR. Co-expression of constitutively active Akt and the AR has similar consequences, which are blocked by alanine substitutions at residues 215 and 792. Furthermore, in motor neuron-derived MN-1 cells toxicity associated with polyglutamine-expanded AR is rescued by co-expression with Akt. Insulin-like growth factor-1 (IGF-1) stimulation, which activates several cell survival promoting pathways, also reduces toxicity of the expanded polyglutamine AR in MN-1 cells, in a manner dependent upon phospho-inositol-3-kinase. IGF-1 rescue of AR toxicity is diminished by alanine substitutions at the Akt consensus sites. These results highlight potential targets for therapeutic intervention in SBMA.


Assuntos
Expansão das Repetições de DNA/genética , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Androgênicos/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Ativação Transcricional
13.
J Biol Chem ; 279(19): 20211-20, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-14981075

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine (polyQ) tract expansion near the N terminus of huntingtin (Htt). Proteolytic processing of mutant Htt and abnormal calcium signaling may play a critical role in disease progression and pathogenesis. Recent work indicates that calpains may participate in the increased and/or altered patterns of Htt proteolysis leading to the selective toxicity observed in HD striatum. Here, we identify two calpain cleavage sites in Htt and show that mutation of these sites renders the polyQ expanded Htt less susceptible to proteolysis and aggregation, resulting in decreased toxicity in an in vitro cell culture model. In addition, we found that calpain- and caspase-derived Htt fragments preferentially accumulate in the nucleus without the requirement of further cleavage into smaller fragments. Calpain family members, calpain-1, -5, -7, and -10, have increased levels or are activated in HD tissue culture and transgenic mouse models, suggesting they may play a key role in Htt proteolysis and disease pathology. Interestingly, calpain-1, -5, -7, and -10 localize to the cytoplasm and the nucleus, whereas the activated forms of calpain-7 and -10 are found only in the nucleus. These results support the role of calpain-derived Htt fragmentation in HD and suggest that aberrant activation of calpains may play a role in HD pathogenesis.


Assuntos
Calpaína/química , Caspases/metabolismo , Núcleo Celular/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Western Blotting , Cálcio/metabolismo , Calpaína/metabolismo , Calpaína/fisiologia , Linhagem Celular , Células Cultivadas , Clonagem Molecular , Citoplasma/metabolismo , DNA Complementar/metabolismo , Progressão da Doença , Epitopos , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Peptídeos , Plasmídeos/metabolismo , Testes de Precipitina , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Tapsigargina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA