Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 59, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433209

RESUMO

BACKGROUND: Pericytes are multifunctional contractile cells that reside on capillaries. Pericytes are critical regulators of cerebral blood flow and blood-brain barrier function, and pericyte dysfunction may contribute to the pathophysiology of human neurological diseases including Alzheimers disease, multiple sclerosis, and stroke. Induced pluripotent stem cell (iPSC)-derived pericytes (iPericytes) are a promising tool for vascular research. However, it is unclear how iPericytes functionally compare to primary human brain vascular pericytes (HBVPs). METHODS: We differentiated iPSCs into iPericytes of either the mesoderm or neural crest lineage using established protocols. We compared iPericyte and HBVP morphologies, quantified gene expression by qPCR and bulk RNA sequencing, and visualised pericyte protein markers by immunocytochemistry. To determine whether the gene expression of neural crest iPericytes, mesoderm iPericytes or HBVPs correlated with their functional characteristics in vitro, we quantified EdU incorporation following exposure to the key pericyte mitogen, platelet derived growth factor (PDGF)-BB and, contraction and relaxation in response to the vasoconstrictor endothelin-1 or vasodilator adenosine, respectively. RESULTS: iPericytes were morphologically similar to HBVPs and expressed canonical pericyte markers. However, iPericytes had 1864 differentially expressed genes compared to HBVPs, while there were 797 genes differentially expressed between neural crest and mesoderm iPericytes. Consistent with the ability of HBVPs to respond to PDGF-BB signalling, PDGF-BB enhanced and a PDGF receptor-beta inhibitor impaired iPericyte proliferation. Administration of endothelin-1 led to iPericyte contraction and adenosine led to iPericyte relaxation, of a magnitude similar to the response evoked in HBVPs. We determined that neural crest iPericytes were less susceptible to PDGFR beta inhibition, but responded most robustly to vasoconstrictive mediators. CONCLUSIONS: iPericytes express pericyte-associated genes and proteins and, exhibit an appropriate physiological response upon exposure to a key endogenous mitogen or vasoactive mediators. Therefore, the generation of functional iPericytes would be suitable for use in future investigations exploring pericyte function or dysfunction in neurological diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pericitos , Humanos , Becaplermina/farmacologia , Endotelina-1/farmacologia , Adenosina , Proliferação de Células
2.
Neurobiol Dis ; 178: 106028, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736923

RESUMO

Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) and the most common non-traumatic cause of neurological disability in young adults. Multiple sclerosis clinical care has improved considerably due to the development of disease-modifying therapies that effectively modulate the peripheral immune response and reduce relapse frequency. However, current treatments do not prevent neurodegeneration and disease progression, and efforts to prevent multiple sclerosis will be hampered so long as the cause of this disease remains unknown. Risk factors for multiple sclerosis development or severity include vitamin D deficiency, cigarette smoking and youth obesity, which also impact vascular health. People with multiple sclerosis frequently experience blood-brain barrier breakdown, microbleeds, reduced cerebral blood flow and diminished neurovascular reactivity, and it is possible that these vascular pathologies are tied to multiple sclerosis development. The neurovascular unit is a cellular network that controls neuroinflammation, maintains blood-brain barrier integrity, and tightly regulates cerebral blood flow, matching energy supply to neuronal demand. The neurovascular unit is composed of vessel-associated cells such as endothelial cells, pericytes and astrocytes, however neuronal and other glial cell types also comprise the neurovascular niche. Recent single-cell transcriptomics data, indicate that neurovascular cells, particular cells of the microvasculature, are compromised within multiple sclerosis lesions. Large-scale genetic and small-scale cell biology studies also suggest that neurovascular dysfunction could be a primary pathology contributing to multiple sclerosis development. Herein we revisit multiple sclerosis risk factors and multiple sclerosis pathophysiology and highlight the known and potential roles of neurovascular unit dysfunction in multiple sclerosis development and disease progression. We also evaluate the suitability of the neurovascular unit as a potential target for future disease modifying therapies for multiple sclerosis.


Assuntos
Esclerose Múltipla , Adulto Jovem , Humanos , Adolescente , Esclerose Múltipla/patologia , Células Endoteliais , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Progressão da Doença
3.
Commun Biol ; 5(1): 511, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637313

RESUMO

Oligodendrocyte progenitor cells (OPCs) express protocadherin 15 (Pcdh15), a member of the cadherin superfamily of transmembrane proteins. Little is known about the function of Pcdh15 in the central nervous system (CNS), however, Pcdh15 expression can predict glioma aggression and promote the separation of embryonic human OPCs immediately following a cell division. Herein, we show that Pcdh15 knockdown significantly increases extracellular signal-related kinase (ERK) phosphorylation and activation to enhance OPC proliferation in vitro. Furthermore, Pcdh15 knockdown elevates Cdc42-Arp2/3 signalling and impairs actin kinetics, reducing the frequency of lamellipodial extrusion and slowing filopodial withdrawal. Pcdh15 knockdown also reduces the number of processes supported by each OPC and new process generation. Our data indicate that Pcdh15 is a critical regulator of OPC proliferation and process motility, behaviours that characterise the function of these cells in the healthy CNS, and provide mechanistic insight into the role that Pcdh15 might play in glioma progression.


Assuntos
Glioma , Células Precursoras de Oligodendrócitos , Proteínas Relacionadas a Caderinas , Proliferação de Células , Glioma/genética , Glioma/metabolismo , Humanos , Oligodendroglia , Protocaderinas
4.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206635

RESUMO

White matter tract (WMT) degeneration has been reported to occur following a stroke, and it is associated with post-stroke functional disturbances. White matter pathology has been suggested to be an independent predictor of post-stroke recovery. However, the factors that influence WMT remodeling are poorly understood. Cortisol is a steroid hormone released in response to prolonged stress, and elevated levels of cortisol have been reported to interfere with brain recovery. The objective of this study was to investigate the influence of corticosterone (CORT; the rodent equivalent of cortisol) on WMT structure post-stroke. Photothrombotic stroke (or sham surgery) was induced in 8-week-old male C57BL/6 mice. At 72 h, mice were exposed to standard drinking water ± CORT (100 µg/mL). After two weeks of CORT administration, mice were euthanised and brain tissue collected for histological and biochemical analysis of WMT (particularly the corpus callosum and corticospinal tract). CORT administration was associated with increased tissue loss within the ipsilateral hemisphere, and modest and inconsistent WMT reorganization. Further, a structural and molecular analysis of the WMT components suggested that CORT exerted effects over axons and glial cells. Our findings highlight that CORT at stress-like levels can moderately influence the reorganization and microstructure of WMT post-stroke.


Assuntos
Corticosterona/administração & dosagem , Gliose/metabolismo , Gliose/patologia , Vias Neurais/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Substância Branca/efeitos dos fármacos , Substância Branca/fisiologia , Animais , Axônios/metabolismo , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Gliose/tratamento farmacológico , Gliose/etiologia , Imuno-Histoquímica , Masculino , Camundongos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia
5.
Front Cell Neurosci ; 14: 570917, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132845

RESUMO

CRISPR/Cas has opened the prospect of direct gene correction therapy for some inherited retinal diseases. Previous work has demonstrated the utility of adeno-associated virus (AAV) mediated delivery to retinal cells in vivo; however, with the expanding repertoire of CRISPR/Cas endonucleases, it is not clear which of these are most efficacious for retinal editing in vivo. We sought to compare CRISPR/Cas endonuclease activity using both single and dual AAV delivery strategies for gene editing in retinal cells. Plasmids of a dual vector system with SpCas9, SaCas9, Cas12a, CjCas9 and a sgRNA targeting YFP, as well as a single vector system with SaCas9/YFP sgRNA were generated and validated in YFP-expressing HEK293A cell by flow cytometry and the T7E1 assay. Paired CRISPR/Cas endonuclease and its best performing sgRNA was then packaged into an AAV2 capsid derivative, AAV7m8, and injected intravitreally into CMV-Cre:Rosa26-YFP mice. SpCas9 and Cas12a achieved better knockout efficiency than SaCas9 and CjCas9. Moreover, no significant difference in YFP gene editing was found between single and dual CRISPR/SaCas9 vector systems. With a marked reduction of YFP-positive retinal cells, AAV7m8 delivered SpCas9 was found to have the highest knockout efficacy among all investigated endonucleases. We demonstrate that the AAV7m8-mediated delivery of CRISPR/SpCas9 construct achieves the most efficient gene modification in neurosensory retinal cells in vivo.

6.
J Neurosci Res ; 98(10): 1905-1932, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32557778

RESUMO

In Alzheimer's disease, amyloid plaque formation is associated with the focal death of oligodendrocytes and soluble amyloid ß impairs the survival of oligodendrocytes in vitro. However, the response of oligodendrocyte progenitor cells (OPCs) to early amyloid pathology remains unclear. To explore this, we performed a histological, electrophysiological, and behavioral characterization of transgenic mice expressing a pathological form of human amyloid precursor protein (APP), containing three single point mutations associated with the development of familial Alzheimer's disease (PDGFB-APPSw.Ind , also known as J20 mice). PDGFB-APPSw.Ind transgenic mice had impaired survival from weaning, were hyperactive by 2 months of age, and developed amyloid plaques by 6 months of age, however, their spatial memory remained intact over this time course. Hippocampal OPC density was normal in P60-P180 PDGFB-APPSw.Ind transgenic mice and, by performing whole-cell patch-clamp electrophysiology, we found that their membrane properties, including their response to kainate (100 µM), were largely normal. However, by P100, the response of hippocampal OPCs to GABA was elevated in PDGFB-APPSw.Ind transgenic mice. We also found that the nodes of Ranvier were shorter, the paranodes longer, and the myelin thicker for hippocampal axons in young adult PDGFB-APPSw.Ind transgenic mice compared with wildtype littermates. Additionally, oligodendrogenesis was normal in young adulthood, but increased in the hippocampus, entorhinal cortex, and fimbria of PDGFB-APPSw.Ind transgenic mice as pathology developed. As the new oligodendrocytes were not associated with a change in total oligodendrocyte number, these cells are likely required for cell replacement.


Assuntos
Amiloidose/patologia , Encéfalo/patologia , Bainha de Mielina/patologia , Neurogênese/fisiologia , Oligodendroglia/patologia , Fatores Etários , Amiloidose/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/genética
7.
Development ; 145(24)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30413560

RESUMO

Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury. Moreover, whereas oligodendrocytes are produced throughout life from a precursor pool, we find that the corresponding cell of the peripheral nervous system, the myelinating Schwann cell (mSC), does not turn over in the adult. However, following injury, all mSCs can dedifferentiate to the proliferating progenitor-like Schwann cells (SCs) that orchestrate the regenerative response. Lineage analysis shows that these newly migratory, progenitor-like cells redifferentiate to form new tissue at the injury site and maintain their lineage, but can switch to become a non-myelinating SC. In contrast, increased plasticity is observed during tumourigenesis. These findings show that peripheral nerves have a distinct mechanism for maintaining homeostasis and can regenerate without the need for an additional stem cell population.This article has an associated 'The people behind the papers' interview.


Assuntos
Sistema Nervoso Central/fisiologia , Homeostase , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/citologia , Nervos Periféricos/fisiologia , Animais , Axônios/metabolismo , Carcinogênese/patologia , Proliferação de Células , Proteínas da Matriz Extracelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Células-Tronco Neurais/metabolismo , Plasticidade Neuronal , Nervos Periféricos/citologia , Nervos Periféricos/ultraestrutura , Células de Schwann/metabolismo
8.
Mol Cell Neurosci ; 77: 21-33, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27664851

RESUMO

The amyloid-ß precursor protein (APP) is a transmembrane protein that is widely expressed within the central nervous system (CNS). While the pathogenic dysfunction of this protein has been extensively studied in the context of Alzheimer's disease, its normal function is poorly understood, and reports have often appeared contradictory. In this study we have examined the role of APP in regulating neurogenesis in the adult mouse brain by comparing neural stem cell proliferation, as well as new neuron number and morphology between APP knockout mice and C57bl6 controls. Short-term EdU administration revealed that the number of proliferating EdU+ neural progenitor cells and the number of PSA-NCAM+ neuroblasts produced in the SVZ and dentate gyrus were not affected by the life-long absence of APP. However, by labelling newborn cells with EdU and then following their fate over-time, we determined that ~48% more newly generated EdU+ NeuN+ neurons accumulated in the granule cell layer of the olfactory bulb and ~57% more in the dentate gyrus of young adult APP knockout mice relative to C57bl6 controls. Furthermore, proportionally fewer of the adult-born olfactory bulb granule neurons were calretinin+. To determine whether APP was having an effect on neuronal maturation, we administered tamoxifen to young adult Nestin-CreERT2::Rosa26-YFP and Nestin-CreERT2::Rosa26-YFP::APP-knockout mice, fluorescently labelling ~80% of newborn (EdU+) NeuN+ dentate granule neurons formed between P75 and P105. Our analysis of their morphology revealed that neurons added to the hippocampus of APP knockout mice have shorter dendritic arbors and only half the number of branch points as those generated in C57bl6 mice. We conclude that APP reduces the survival of newborn neurons in the olfactory bulb and hippocampus, but that it does not influence all neuronal subtypes equally. Additionally, APP influences dentate granule neuron maturation, acting as a robust regulator of dendritic extension and arborisation.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Bulbo Olfatório/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimento
9.
PLoS One ; 11(9): e0162858, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27626928

RESUMO

In the central nervous system (CNS) platelet derived growth factor receptor alpha (PDGFRα) is expressed exclusively by oligodendrocyte progenitor cells (OPCs), making the Pdgfrα promoter an ideal tool for directing transgene expression in this cell type. Two Pdgfrα-CreERT2 mouse lines have been generated for this purpose which, when crossed with cre-sensitive reporter mice, allow the temporally restricted labelling of OPCs for lineage-tracing studies. These mice have also been used to achieve the deletion of CNS-specific genes from OPCs. However the ability of Pdgfrα-CreERT2 mice to induce cre-mediated recombination in PDGFRα+ cell populations located outside of the CNS has not been examined. Herein we quantify the proportion of PDGFRα+ cells that become YFP-labelled following Tamoxifen administration to adult Pdgfrα-CreERT2::Rosa26-YFP transgenic mice. We report that the vast majority (>90%) of PDGFRα+ OPCs in the CNS, and a significant proportion of PDGFRα+ stromal cells within the bone marrow (~38%) undergo recombination and become YFP-labelled. However, only a small proportion of the PDGFRα+ cell populations found in the sciatic nerve, adrenal gland, pituitary gland, heart, gastrocnemius muscle, kidney, lung, liver or intestine become YFP-labelled. These data suggest that Pdgfrα-CreERT2 transgenic mice can be used to achieve robust recombination in OPCs, while having a minimal effect on most PDGFRα+ cell populations outside of the CNS.


Assuntos
Oligodendroglia/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Estrogênio/metabolismo , Recombinação Genética , Células-Tronco/metabolismo , Animais , Linhagem Celular , Linhagem da Célula/genética , Feminino , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptores de Estrogênio/genética , Proteínas Recombinantes/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/citologia , Tamoxifeno/farmacologia
10.
PLoS One ; 11(6): e0155878, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280679

RESUMO

The low density lipoprotein-receptor related protein 1 (LRP1) is a large endocytic cell surface receptor that is known to interact with a variety of ligands, intracellular adaptor proteins and other cell surface receptors to regulate cellular behaviours ranging from proliferation to cell fate specification, migration, axon guidance, and lipid metabolism. A number of studies have demonstrated that LRP1 is expressed in the brain, yet it is unclear which central nervous system cell types express LRP1 during development and in adulthood. Herein we undertake a detailed study of LRP1 expression within the mouse brain and spinal cord, examining a number of developmental stages ranging from embryonic day 13.5 to postnatal day 60. We report that LRP1 expression in the brain peaks during postnatal development. On a cellular level, LRP1 is expressed by radial glia, neuroblasts, microglia, oligodendrocyte progenitor cells (OPCs), astrocytes and neurons, with the exception of parvalbumin+ interneurons in the cortex. Most cell populations exhibit stable expression of LRP1 throughout development; however, the proportion of OPCs that express LRP1 increases significantly from ~69% at E15.5 to ~99% in adulthood. We also report that LRP1 expression is rapidly lost as OPCs differentiate, and is absent from all oligodendrocytes, including newborn oligodendrocytes. While LRP1 function has been primarily examined in mature neurons, these expression data suggest it plays a more critical role in glial cell regulation-where expression levels are much higher.


Assuntos
Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células Cultivadas , Feminino , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/citologia , Neurônios/citologia
11.
Mol Cell Neurosci ; 66(Pt B): 129-40, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25684676

RESUMO

Neuronal cytoskeletal alterations, in particular the loss and misalignment of microtubules, are considered a hallmark feature of the degeneration that occurs after traumatic brain injury (TBI). Therefore, microtubule-stabilizing drugs are attractive potential therapeutics for use following TBI. The best-known drug in this category is Paclitaxel, a widely used anti-cancer drug that has produced promising outcomes when employed in the treatment of various animal models of nervous system trauma. However, Paclitaxel is not ideal for the treatment of patients with TBI due to its limited blood-brain barrier (BBB) permeability. Herein we have characterized the effect of the brain penetrant microtubule-stabilizing agent Epothilone D (Epo D) on post-injury axonal sprouting in an in vitro model of CNS trauma. Epo D was found to modulate axonal sprout number in a dose dependent manner, increasing the number of axonal sprouts generated post-injury. Elevated sprouting was observed when analyzing the total population of injured neurons, as well as in selective analysis of Thy1-YFP-labeled excitatory neurons. However, we found no effect of Epo D on axonal sprout length or outgrowth speed. These findings indicate that Epo D specifically affects injury-induced axonal sprout generation, but not net growth. Our investigation demonstrates that primary cultures of cortical neurons are tolerant of Epo D exposure, and that Epo D significantly increases their regenerative response following structural injury. Therefore Epo D may be a potent therapeutic for enhancing regeneration following CNS injury. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.


Assuntos
Axônios/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Epotilonas/farmacologia , Microtúbulos/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo
12.
J Neurosci Res ; 92(11): 1478-89, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24916405

RESUMO

The function of the ß-amyloid precursor protein (APP) of Alzheimer's disease is poorly understood. The secreted ectodomain fragment of APP (sAPPα) can be readily cleaved to produce a small N-terminal fragment (N-APP) that contains heparin-binding and metal-binding domains and that has been found to have biological activity. In the present study, we examined whether N-APP can bind to lipids. We found that N-APP binds selectively to phosphoinositides (PIPs) but poorly to most other lipids. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 )-rich microdomains were identified on the extracellular surface of neurons and glia in primary hippocampal cultures. N-APP bound to neurons and colocalized with PIPs on the cell surface. Furthermore, the binding of N-APP to neurons increased the level of cell-surface PI(4,5)P2 and phosphatidylinositol 3,4,5-trisphosphate. However, PIPs were not the principal cell-surface binding site for N-APP, because N-APP binding to neurons was not inhibited by a short-acyl-chain PIP analogue, and N-APP did not bind to glial cells which also possessed PI(4,5)P2 on the cell surface. The data are explained by a model in which N-APP binds to two distinct components on neurons, one of which is an unidentified receptor and the second of which is a PIP lipid, which binds more weakly to a distinct site within N-APP. Our data provide further support for the idea that N-APP may be an important mediator of APP's biological activity.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Hipocampo/citologia , Fosfatidilinositóis/metabolismo , Ligação Proteica/fisiologia , Precursor de Proteína beta-Amiloide/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Sítios de Ligação/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica/efeitos dos fármacos
13.
Neurodegener Dis ; 13(2-3): 96-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23942027

RESUMO

Stem cell therapy may be a suitable approach for the treatment of many neurodegenerative diseases. However, one major impediment to the development of successful cell-based therapies is our limited understanding of the mechanisms that instruct neural stem cell behaviour, such as proliferation and cell fate specification. The ß-amyloid precursor protein (APP) of Alzheimer's disease (AD) may play an important role in neural stem cell proliferation and differentiation. Our recent work shows that in vitro, APP stimulates neural stem or progenitor cell proliferation and neuronal differentiation. The effect on proliferation is mediated by an autocrine factor that we have identified as cystatin C. As cystatin C expression is also reported to inhibit the development of amyloid pathology in APP transgenic mice, our finding has implications for the possible use of cystatin C for the therapy of AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Encéfalo/citologia , Diferenciação Celular , Proliferação de Células , Humanos , Células-Tronco Neurais/citologia
14.
J Biol Chem ; 288(26): 18853-62, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671283

RESUMO

The amyloid precursor protein (APP) is well studied for its role in Alzheimer disease. However, little is known about its normal function. In this study, we examined the role of APP in neural stem/progenitor cell (NSPC) proliferation. NSPCs derived from APP-overexpressing Tg2576 transgenic mice proliferated more rapidly than NSPCs from the corresponding background strain (C57Bl/6xSJL) wild-type mice. In contrast, NSPCs from APP knock-out (APP-KO) mice had reduced proliferation rates when compared with NSPCs from the corresponding background strain (C57Bl/6). A secreted factor, identified as cystatin C, was found to be responsible for this effect. Levels of cystatin C were higher in the Tg2576 conditioned medium and lower in the APP-KO conditioned medium. Furthermore, immunodepletion of cystatin C from the conditioned medium completely removed the ability of the conditioned medium to increase NSPC proliferation. The results demonstrate that APP expression stimulates NSPC proliferation and that this effect is mediated via an increase in cystatin C secretion.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Cistatina C/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco/citologia , Precursor de Proteína beta-Amiloide/genética , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Neurônios/metabolismo
15.
Stem Cells Dev ; 21(7): 1047-58, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21615282

RESUMO

Neural precursor cells (NPCs) with high proliferative potential are commonly expanded in vitro as neurospheres. As a population, neurosphere cells show long-term self-renewal capacity and multipotentiality in vitro. These features have led to the assumption that neurosphere cells represent an expansion of the endogenous NPCs residing within the embryonic and adult brain. If this is the case, in principle, bona-fide expansion of endogenous NPCs should not significantly affect their capacity to respond to their original niche of differentiation. To address this issue, we generated primary neurospheres from the dopaminergic niche of the ventral mesencephalon and then transplanted these cells to their original niche within mesencephalic explant cultures. Primary neurosphere cells showed poor capacity to generate dopaminergic neurons in the mesencephalic niche of dopaminergic neurogenesis. Instead, most primary neurosphere cells showed glial commitment as they differentiated into astrocytes in an exclusively neurogenic niche. Subculture of primary cells demonstrated that the neurosphere assay does not amplify niche-responsive dopaminergic progenitors. Further, neurospheres cells were largely unable to acquire the endogenous positional identity within the Nkx6.1(+), Nkx2.2(+), and Pax7(+) domains of mesencephalic explants. Finally, we demonstrate that our observations are not specific for embryonic mesencephalic cells, as NPCs in the adult subventricular zone also showed an intrinsic fate switch from neuronal to glial potential upon neurosphere amplification. Our data suggest that neurosphere formation does not expand the endogenous neurogenic NPCs but rather promotes amplification of gliogenic precursors that do not respond to niche-derived signals of cellular specification and differentiation.


Assuntos
Neurônios Dopaminérgicos/citologia , Mesencéfalo/citologia , Células-Tronco Neurais/fisiologia , Neurogênese , Neuroglia/citologia , Esferoides Celulares/citologia , Nicho de Células-Tronco , Animais , Antígenos de Diferenciação/metabolismo , Técnicas de Cultura de Células , Forma Celular , Células Cultivadas , Técnicas de Cocultura , Proteínas de Fluorescência Verde/biossíntese , Proteína Homeobox Nkx-2.2 , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Células-Tronco Neurais/metabolismo , Proteínas Recombinantes/biossíntese , Esferoides Celulares/metabolismo , Técnicas de Cultura de Tecidos
16.
Glia ; 58(8): 943-53, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20155815

RESUMO

The lack of markers for astrocytes, particularly gray matter astrocytes, significantly hinders research into their development and physiological properties. We previously reported that fibroblast growth factor receptor 3 (Fgfr3) is expressed by radial precursors in the ventricular zone of the embryonic neural tube and subsequently by differentiated astrocytes in gray and white matter. Here, we describe an Fgfr3-iCreER(T2) phage artificial chromosome transgenic mouse line that allows efficient tamoxifen-induced Cre recombination in Fgfr3-expressing cells, including radial glial cells in the embryonic neural tube and both fibrous and protoplasmic astrocytes in the mature central nervous system. This mouse strain will therefore be useful for studies of normal astrocyte biology and their responses to CNS injury or disease. In addition, Fgfr3-iCreER(T2) drives Cre recombination in all neurosphere-forming stem cells in the adult spinal cord and at least 90% of those in the adult forebrain subventricular zone. We made use of this to show that there is continuous accumulation of all major interneuron subtypes in the olfactory bulb (OB) from postnatal day 50 (P50) until at least P230 ( approximately 8 months of age). It therefore seems likely that adult-born interneurons integrate into existing circuitry and perform long-term functions in the adult OB.


Assuntos
Astrócitos/fisiologia , Células-Tronco Embrionárias/fisiologia , Neurônios/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Animais , Antígenos/metabolismo , Antineoplásicos Hormonais/farmacologia , Astrócitos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bromodesoxiuridina/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Ventrículos Cerebrais/citologia , Embrião de Mamíferos , Células-Tronco Embrionárias/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Integrases/genética , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Bulbo Olfatório/citologia , Fator de Transcrição 2 de Oligodendrócitos , Proteoglicanas/metabolismo , RNA Mensageiro/metabolismo , Medula Espinal/citologia , Tamoxifeno/farmacologia
17.
Neuron Glia Biol ; 5(3-4): 57-67, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20346197

RESUMO

Oligodendrocyte precursors (OLPs or 'NG2 cells') are abundant in the adult mouse brain, where they continue to proliferate and generate new myelinating oligodendrocytes. By cumulative BrdU labelling, we estimated the cell cycle time TC and the proportion of NG2 cells that is actively cycling (the growth fraction) at approximately postnatal day 6 (P6), P60, P240 and P540. In the corpus callosum, TC increased from <2 days at P6 to approximately 9 days at P60 to approximately 70 days at P240 and P540. In the cortex, TC increased from approximately 2 days to >150 days over the same period. The growth fraction remained relatively invariant at approximately 50% in both cortex and corpus callosum - that is, similar numbers of mitotically active and inactive NG2 cells co-exist at all ages. Our data imply that a stable population of quiescent NG2 cells appears before the end of the first postnatal week and persists throughout life. The mitotically active population acts as a source of new oligodendrocytes during adulthood, while the biological significance of the quiescent population remains to be determined. We found that the mitotic status of adult NG2 cells is unrelated to their developmental site of origin in the ventral or dorsal telencephalon. We also report that new oligodendrocytes continue to be formed at a slow rate from NG2 cells even after P240 (8 months of age).


Assuntos
Envelhecimento/fisiologia , Antígenos/metabolismo , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Ciclo Celular/fisiologia , Oligodendroglia/fisiologia , Proteoglicanas/metabolismo , Fatores Etários , Animais , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Ciclo Celular/efeitos dos fármacos , Antagonistas de Estrogênios/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Oligodendroglia/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Tamoxifeno/farmacologia
18.
Nat Neurosci ; 11(12): 1392-401, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18849983

RESUMO

Platelet-derived growth factor alpha receptor (PDGFRA)/NG2-expressing glia are distributed throughout the adult CNS. They are descended from oligodendrocyte precursors (OLPs) in the perinatal CNS, but it is not clear whether they continue to generate myelinating oligodendrocytes or other differentiated cells during normal adult life. We followed the fates of adult OLPs in Pdgfra-creER(T2)/Rosa26-YFP double-transgenic mice and found that they generated many myelinating oligodendrocytes during adulthood; >20% of all oligodendrocytes in the adult mouse corpus callosum were generated after 7 weeks of age, raising questions about the function of the late-myelinating axons. OLPs also produced some myelinating cells in the cortex, but the majority of adult-born cortical cells did not appear to myelinate. We found no evidence for astrocyte production in gray or white matter. However, small numbers of projection neurons were generated in the forebrain, especially in the piriform cortex, which is the main target of the olfactory bulb.


Assuntos
Células-Tronco Adultas/fisiologia , Antígenos/metabolismo , Córtex Cerebral/citologia , Neurônios/fisiologia , Oligodendroglia/fisiologia , Proteoglicanas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/fisiologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Células-Tronco Adultas/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bromodesoxiuridina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Córtex Cerebral/fisiologia , Antagonistas de Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Proteína Básica da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/fisiologia , Fator de Transcrição 2 de Oligodendrócitos , Fosfopiruvato Hidratase/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA não Traduzido , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Transcrição SOXE/metabolismo , Tamoxifeno/farmacologia
19.
J Neurosci ; 27(19): 5146-55, 2007 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-17494700

RESUMO

Although our understanding of adult neurogenesis has increased dramatically over the last decade, confusion still exists regarding both the identity of the stem cell responsible for neuron production and the mechanisms that regulate its activity. Here we show, using flow cytometry, that a small population of cells (0.3%) within the stem cell niche of the rat subventricular zone (SVZ) expresses the p75 neurotrophin receptor (p75(NTR)) and that these cells are responsible for neuron production in both newborn and adult animals. In the adult, the p75(NTR)-positive population contains all of the neurosphere-producing precursor cells, whereas in the newborn many of the precursor cells are p75(NTR) negative. However, at both ages, only the neurospheres derived from p75(NTR)-positive cells are neurogenic. We also show that neuron production from p75(NTR)-positive but not p75(NTR)-negative precursors is greatly enhanced after treatment with brain-derived neurotrophic factor (BDNF) or nerve growth factor. This effect appears to be mediated specifically by p75(NTR), because precursor cells from p75(NTR)-deficient mice show a 70% reduction in their neurogenic potential in vitro and fail to respond to BDNF treatment. Furthermore, adult p75(NTR)-deficient mice have significantly reduced numbers of PSA-NCAM (polysialylated neural cell adhesion molecule)-positive SVZ neuroblasts in vivo and a lower olfactory bulb weight. Thus, p75(NTR) defines a discrete population of highly proliferative SVZ precursor cells that are able to respond to neurotrophin activation by increasing neuroblast generation, making this pathway the most likely mechanism for the increased neurogenesis that accompanies raised BDNF levels in a variety of disease and behavioral situations.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Neurônios/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Células-Tronco/metabolismo , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Encéfalo/citologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular/genética , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Knockout , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/citologia , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Ratos , Ratos Wistar , Receptor de Fator de Crescimento Neural/genética , Ácidos Siálicos/metabolismo , Esferoides Celulares , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Telencéfalo/citologia , Telencéfalo/embriologia , Telencéfalo/metabolismo
20.
J Neurosci Res ; 83(1): 39-49, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16307445

RESUMO

The number of cells generated by a proliferating stem or precursor cell can be influenced both by proliferation and by the degree of cell death/survival of the progeny generated. In this study, the extent to which cell survival controls progenitor number was examined by comparing the growth characteristics of neurosphere cultures derived from mice lacking genes for the death-inducing Bcl-2 homologue Hara Kiri (Hrk), apoptosis-associated protein 1 (Apaf1), or the prosurvival nuclear factor-kappaB (NFkappaB) subunits p65, p50, or c-rel. We found no evidence that Hrk or Apaf1, and by inference the mitochondrial cell death pathway, are involved in regulating the number of neurosphere-derived progeny. However, we identified the p65p50 NFkappaB dimer as being required for the normal growth and expansion of neurosphere cultures. Genetic loss of both p65 and p50 NFkappaB subunits resulted in a reduced number of progeny but an increased proportion of neurons. No effect on cell survival was observed. This suggests that the number and fate of neural progenitor cells are more strongly regulated by cell cycle control than survival.


Assuntos
Sobrevivência Celular/fisiologia , Subunidade p50 de NF-kappa B/fisiologia , Neurônios/fisiologia , Células-Tronco/fisiologia , Fator de Transcrição RelA/fisiologia , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Fator Apoptótico 1 Ativador de Proteases , Contagem de Células , Morte Celular/genética , Morte Celular/fisiologia , Proliferação de Células , Genes bcl-2/fisiologia , Genes rel/fisiologia , Genótipo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/fisiologia , Técnicas de Cultura de Órgãos , Proteínas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA