Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolism ; 154: 155811, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309690

RESUMO

The incidence of nonalcoholic fatty liver disease (NAFLD) is on the rise, mirroring a global surge in diabetes and metabolic syndrome, as its major leading causes. NAFLD represents a spectrum of liver disorders, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Mechanistically, we know the unfolded protein response (UPR) as a protective cellular mechanism, being triggered under circumstances of endoplasmic reticulum (ER) stress. The hepatic UPR is turned on in a broad spectrum of liver diseases, including NAFLD. Recent data also defines molecular mechanisms that may underlie the existing correlation between UPR activation and NAFLD. More interestingly, subsequent studies have demonstrated an additional mechanism, i.e. autophagy, to be involved in hepatic steatosis, and thus NAFLD pathogenesis, principally by regulating the insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. All these findings suggest possible mechanistic roles for autophagy in the progression of NAFLD and its complications. Both UPR and autophagy are dynamic and interconnected fluxes that act as protective responses to minimize the harmful effects of hepatic lipid accumulation, as well as the ER stress during NAFLD. The functions of UPR and autophagy in the liver, together with findings of decreased hepatic autophagy in correlation with conditions that predispose to NAFLD, such as obesity and aging, suggest that autophagy and UPR, alone or combined, may be novel therapeutic targets against the disease. In this review, we discuss the current evidence on the interplay between autophagy and the UPR in connection to the NAFLD pathogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Resposta a Proteínas não Dobradas , Fígado/metabolismo , Autofagia/fisiologia
2.
PLoS One ; 18(10): e0293217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37862340

RESUMO

BACKGROUND: Epigenetic modifications, particularly histone acetylation-deacetylation and its related enzymes, such as sirtuin 1 (SIRT1) deacetylase, may have substantial roles in the pathogenesis of obesity and its associated health issues. This study aimed to evaluate global histone acetylation status and SIRT1 gene expression in children and adolescents with obesity and their association with metabolic and anthropometric parameters. METHODS: This study included 60 children and adolescents, 30 with obesity and 30 normal-weight. The evaluation consisted of the analysis of global histone acetylation levels and the expression of the SIRT1 gene in peripheral blood mononuclear cells, by specific antibody and real-time PCR, respectively. Additionally, insulin, fasting plasma glucose, lipid profile and tumor necrosis factor α (TNF-α) levels were measured. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Metabolic syndrome was determined based on the diagnostic criteria established by IDF. RESULTS: Individuals with obesity, particularly those with insulin resistance, had significantly higher histone acetylation levels compared to control group. Histone acetylation was positively correlated with obesity indices, TNF-α, insulin, and HOMA-IR. Additionally, a significant decrease in SIRT1 gene expression was found among obese individuals, which was negatively correlated with the histone acetylation level. Furthermore, SIRT1 expression levels showed a negative correlation with various anthropometric and metabolic parameters. CONCLUSION: Histone acetylation was enhanced in children and adolescents with obesity, potentially resulting from down-regulation of SIRT1, and could play a role in the obesity-associated metabolic abnormalities and insulin resistance. Targeting global histone acetylation modulation might be considered as an epigenetic approach for early obesity management.


Assuntos
Resistência à Insulina , Obesidade Infantil , Humanos , Adolescente , Criança , Obesidade Infantil/genética , Resistência à Insulina/fisiologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Histonas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Acetilação , Leucócitos Mononucleares/metabolismo , Insulina/metabolismo , Índice de Massa Corporal
3.
J Bioenerg Biomembr ; 52(2): 103-111, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31960257

RESUMO

Cancer cells apply the Warburg pathway to meet their increased metabolic demands caused by their rapid growth and proliferation and also creates an acidic environment to promote cancer cell invasion. 3-bromopyruvate (3-BrP) as an anti-cancer agent disrupts glycolytic pathway. Moreover, one of the mechanism of actions of Methyl Jasmonate (MJ) is interference in glycolysis. Hence, the aim of this study was to evaluate MJ and 3-BrP interaction. MTT assay was used to determine IC50 and synergistic concentrations. Combination index was applied to evaluate the drug- drug interaction. Human tumor xenograft breast cancer mice was used to evaluate drug efficacy in vivo. Tumor size was considered as a drug efficacy criterion. In addition to drug efficacy, probable side effects of these drugs including hepatotoxicity, renal failure, immunotoxicity, and losing weight were evaluated. Serum alanine aminotransferase and aspartate aminotransferase for hepatotoxicity, serum urea and creatinine level for the possibility of renal failure and changes in body weight were measured to evaluate drug toxicity. IL10 and TGFß secretion in supernatant of isolated splenocytes from treated mice were assessed to check immunotoxicity. 3-BrP synergistically augmented the efficacy of MJ in the specific concentrations. This polytherapy was more effective than monotherapy of 3-BrP, MJ, and also surprisingly cyclophosphamide as a routine treatment for breast cancer in the tumor bearing mice. These results have been shown by decrease in tumor volume and increase of tumor growth inhibition percentage. This combination therapy didn't have any noticeable side effects on kidney, liver, and immune system and body weight.


Assuntos
Acetatos/uso terapêutico , Marcadores de Afinidade/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Ciclopentanos/uso terapêutico , Oxilipinas/uso terapêutico , Reguladores de Crescimento de Plantas/química , Piruvatos/uso terapêutico , Acetatos/farmacologia , Marcadores de Afinidade/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ciclopentanos/farmacologia , Modelos Animais de Doenças , Feminino , Camundongos , Oxilipinas/farmacologia , Piruvatos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Cell Physiol ; 235(2): 880-890, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31256424

RESUMO

Sirtuin1 (SIRT1) is a crucial regulator of metabolism and it is implicated in the metabolic pathophysiology of several disorders inclusive of Type 2 diabetes and fatty liver disease (NAFLD). The aim of this study was to investigate the role of miR-141 in hepatic steatosis via regulation of SIRT1/AMP-activated protein kinase (AMPK) pathway in hepatocytes. Liver hepatocellular cells (HepG2) were treated with high concentration of glucose to be subsequently used for the assessment of miR-141 and SIRT1 levels in a model of hepatic steatosis. On the other hand, cells were transfected with miR-141 to investigate its effect on hepatocyte steatosis and viability as well as SIRT1 expression and activity along with AMPK phosphorylation. Targeting of SIRT1 by miR-141 was evaluated by bioinformatics tools and confirmed by luciferase reporter assay. Following the intracellular accumulation of lipids in HepG2 cells, the level of miR-141 was increased while SIRT1 mRNA and protein levels, as well as AMPK phosphorylation, was decreased. Transfection with miR-141 mimic significantly downregulated SIRT1 expression and activity while miR-141 inhibitor had the opposite effects. Additionally, modulation of miR-141 levels significantly influenced AMPK phosphorylation status. The results of luciferase reporter assay verified SIRT1 to be directly targeted by miR-141. miR-141 could effectively suppress SIRT1 and lead to decreased AMPK phosphorylation in HepG2 cells. Thus, miR-141/SIRT1/AMPK signaling pathway may be considered a potential target for the therapeutic management of NAFLD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sirtuína 1/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Lipídeos/análise , Fígado/patologia , Obesidade/patologia
5.
EXCLI J ; 18: 838-851, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645844

RESUMO

Breast cancer (BC) is the most prevalent cause of cancer-related death in women worldwide. BC is frequently associated with elevated levels of nicotinamide phosphoribosyltransferase (NAMPT) in blood and tumor tissue. MicroRNA-494 (miR-494) has been described to play key anti-tumor roles in human cancers. The aim of the present study was to investigate the inhibitory effect of miR-494 on NAMPT-mediated viability of BC cells. In this experimental study, MCF-7 and MDA-MB-231 cells were cultured and then transfected with miR-494 mimic, miR-494 inhibitor and their negative controls. The mRNA and protein expression of NAMPT were assessed using real-time PCR and Western blotting, respectively. Subsequently, intracellular NAD levels were determined by a colorimetric method. Finally, cell apoptosis was examined by flow cytometry. Bioinformatics evaluations predicted NAMPT as a miR-494 target gene which was confirmed by luciferase reporter assay. Our results showed an inverse relationship between the expression of miR-494 and NAMPT in both MCF-7 and MDA-MB-231 cell lines. miR-494 significantly down-regulated NAMPT mRNA and protein expression and was also able to reduce the cellular NAD content. Cell viability was decreased following miR-494 up-regulation. In addition, apoptosis was induced in MCF-7 and MDA-MB-231 cells by miR-494 mimic. Our findings indicate that miR-494 acts as a tumor suppressor and has an important effect in suppressing the growth of BC cells through NAMPT. Therefore, miR-494 might be considered as a novel therapeutic target for the management of human breast cancer.

6.
Gene ; 711: 143939, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31220581

RESUMO

Sirtuin 1 is one of the regulators of cell growth and survival and its inhibition is suggested as a suitable mechanism to overcome breast cancer development. In this study we explored the role of miR-211-5p in SIRT1/p53 pathway and its influence on breast cancer cell viability and apoptosis. Cells were transfected with miR-211-5p mimic and inhibitor to modulate cellular miR-211-5p levels in breast cancer cell lines, MDA-MB-231 and MCF-7. Gene expression of miR-211-5p and SIRT1 were measured with real-time PCR. SIRT1 protein level and the acetylation of p53 as well as SIRT1 activity were evaluated by Western blotting and fluorometry, respectively. In order to explore the direct attachment of miR-211-5p to the 3'-UTR of SIRT1 mRNA, luciferase reporter assay was applied. Cell viability in response to miR-211-5p was studied by MTT assay and apoptosis was assessed by annexin V labeling followed by flow cytometry. Results showed that SIRT1 gene and protein expression were inhibited by miR-211-5p and the 3'-UTR of SIRT1 was found to be directly targeted by miR-211-5p. Inhibition of SIRT1 expression resulted in its reduced activity. Up-regulation of miR-211-5p was also followed by a significant decline in the acetylation status of p53 which was associated with remarkable decreased cell viability and induction of apoptosis in breast cancer cells. Antisense oligonucleotide of miR-211-5p acted as its inhibitor and exerted opposite effects both on SIRT1 expression and cell apoptosis. In conclusion, inhibition of SIRT1 by miR-211-5p could effectively reduce breast cancer cell survival and cause cell death and therefore might be considered a seemly mechanism for designing anticancer therapies.


Assuntos
Neoplasias da Mama/metabolismo , MicroRNAs/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regiões 3' não Traduzidas , Acetilação , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7
7.
Biochem Genet ; 57(4): 507-521, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30697640

RESUMO

Non-alcoholic fatty liver disease is one of the main causes of chronic liver disease and therefore is currently considered a major public health problem. Sirtuin 1 (SIRT1) is an NAD-dependent deacetylase enzyme that contributes in the regulation of metabolic processes and protects against lipid accumulation in hepatocytes. Its expression is potentially regulated by microRNAs which attach to the 3' untranslated region (3'-UTR) of their target mRNA. HepG2 cells were incubated by glucose to induce lipid accumulation and were subsequently transfected with mir-23b mimic and inhibitor. Real-time PCR was used for measuring the expression of mir-23b and SIRT1 mRNA. Cell survival assay and intracellular triglyceride measurement were performed using colorimetric methods. Determination of SIRT1 protein level and activity were done by western blot and fluorometric analysis, respectively. The interaction of miR-23b with 3'-UTR of SIRT1 mRNA was confirmed by dual luciferase. miR-23b mimic inhibited gene and protein expression of SIRT1, while the inhibitor of miR-23b significantly elevated the expression levels of SIRT1 mRNA and protein. The results showed that the 3'-UTR of SIRT1 mRNA is a direct target for miR-23b. The intracellular triglyceride level was increased following the inhibition of SIRT1 in transfected HepG2 cell by miR-23b mimic. Cell viability was decreased in response to miR-23b upregulation compared to control cells. miR-23b reduces the expression and activity of SIRT1 and therefore may be a causative factor in the enhancement of lipid accumulation in HepG2 cells.


Assuntos
Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Regiões 3' não Traduzidas , Sobrevivência Celular/genética , Regulação para Baixo , Células HEK293 , Células Hep G2 , Humanos , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirtuína 1/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima
8.
J Cell Biochem ; 120(6): 9356-9368, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520099

RESUMO

Downregulation of microRNA-590-3p (miR-590-3p) is a frequently occurring, nonphysiological event which is observed in several human cancers, especially breast cancer. However, the significance of miR-590-3p still remain unclear in the progression of this disease. This study explored the role of miR-590-3p in apoptosis of breast cancer cells. Gene expression of miR-590-3p, Sirtuin-1 (SIRT1), Bcl-2 associated X protein (BAX), and p21 was evaluated with real-time polymerase chain reaction (PCR) and SIRT1 protein expression was assessed by Western blot analysis in breast cancer cell lines. Bioinformatics analysis and luciferase reporter assay were used to evaluate targeting of SIRT1 messenger RNA (mRNA) by miR-590-3p. Cells were transfected with miR-590-3p mimic and inhibitor and their effects on the expression and activity of SIRT1 were evaluated. The effects of miR-590-3p upregulation on the acetylation of p53 as well as cell viability and apoptosis were assessed by Western blot analysis, WST-1 assay, and flow cytometry, respectively. miR-590-3p expression was considerably downregulated in breast cancer cells which was accompanied by upregulation of SIRT1 expression. SIRT1 was recognized as a direct target for miR-590-3p in breast cancer cells and its protein expression and activity was dramatically inhibited by the miR-590-3p. In addition, there was an increase in p53 and its acetylated form that ultimately led to upregulation of BAX and p21 expression, suppression of cell survival, and considerable induction of apoptosis in breast cancer cells. These findings suggest that miR-590-3p exerts tumor-suppressing effects through targeting SIRT1 in breast cancer cells, which makes it a potential therapeutic target for developing more efficient treatments for breast cancer.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Sirtuína 1/genética , Proteína Supressora de Tumor p53/genética , Apoptose/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Transdução de Sinais/genética
9.
Gene ; 673: 149-158, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29886033

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme for all living cells. Nicotinamide phosphoribosyltransferase (NAMPT) functions as a key enzyme in the salvage pathway of NAD biosynthesis. Cancer cells have higher rate of NAD consumption and therefore NAMPT is essential for their survival. Thus, we investigated the effect of NAMPT inhibition by miR-206 on breast cancer cell survival. Breast cancer cells were transfected with miR-206 mimic, inhibitor and their negative controls. NAMPT levels were assessed by real-time PCR as well as western blotting. Cell survival assay and quantification of NAD level were performed by using colorimetric methods. Apoptosis assay was performed by labeling cells with Annexin V-FITC and propidium iodide followed by the flow cytometric analysis. Bioinformatics analysis was done to assess whether NAMPT 3'-UTR is a direct target of miR-206 and the results were confirmed by the luciferase reporter assay. NAMPT 3'-UTR was shown to be a direct target of miR-206. miR-206 reduced NAMPT expression at the protein level, leading to a significant decrease in the intracellular NAD level and subsequent decline in cell survival and induction of apoptosis. Targeting of NAMPT-mediated NAD salvage pathway by miR-206 might provide a new insight in the possible molecular mechanism of breast cancer cell growth regulation. This pathway might provide a new approach for breast cancer therapy.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Citocinas/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Regiões 3' não Traduzidas , Apoptose , Western Blotting , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Luciferases/metabolismo , Células MCF-7 , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA