Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(3)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38543273

RESUMO

5-fluorouracil (5-FU), commercially available as a topical product, is approved for non-melanoma skin cancer (NMSC) treatment with several clinical limitations. This work aimed to develop 5-FU-loaded topical patches as a potential alternative to overcome such drawbacks. The patches offer accurate dosing, controlled drug release and improved patient compliance. Our study highlights the development of Eudragit® E (EuE)-based drug-in-adhesive (DIA) patches containing a clinically significant high level of 5-FU (approximately 450 µg/cm2) formulated with various chemical permeation enhancers. The patches containing Transcutol® (Patch-TRAN) or oleic acid (Patch-OA) demonstrated significantly higher skin penetration ex vivo than their control counterpart, reaching 5-FU concentrations of 76.39 ± 27.7 µg/cm2 and 82.56 ± 8.2 µg/cm2, respectively. Furthermore, the findings from in vitro permeation studies also validated the superior skin permeation of 5-FU achieved by Patch-OA and Patch-TRAN over 72 h. Moreover, the EuE-based DIA patch platform demonstrated suitable adhesive and mechanical properties with an excellent safety profile evaluated through an inaugural in vivo human study involving 11 healthy volunteers. In conclusion, the DIA patches could be a novel alternative option for NMSC as the patches effectively deliver 5-FU into the dermis layer and receptor compartment ex vivo for an extended period with excellent mechanical and safety profiles.

2.
Int J Pharm ; 651: 123790, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190951

RESUMO

Adjuvant chemotherapy is highly recommended for liver cancer to enhance survival rates due to its tendency to recur frequently. Localized drug-eluting implants have gained traction as an alternative to overcome the limitations of systemic chemotherapy. This work describes the development of biodegradable 3D printed (3DP) bilayer films loaded with 5-fluorouracil (5FU) and cisplatin (Cis) with different infill percentages where the 5FU layers were 40%, 30%, and 30% and Cis layers were 10%, 15%, and 10% for films A, B, and C, respectively. The relevant characterization tests were performed, and the drug content of films was 0.68, 0.50, and 0.50 mg of 5FU and 0.39, 0.80, and 0.34 mg of Cis for films A, B, and C, respectively. Cis release was affected by the alterations to the film design, where films A, B, and C showed complete release at 12, 14, and 23 days, respectively. However, 5FU was released over 24 h for all films. The films were stable for up to two weeks after storage at 25 °C/65% relative humidity and four weeks at 4 °C where drug content, tensile strength, FTIR, and thermal analysis results demonstrated negligible alterations. The cytotoxicity of the films was assessed by MTS assays using HepG2 cell lines demonstrating up to 81% reduction in cell viability compared to blank films. Moreover, apoptosis was confirmed by Western Blots and the determination of mitochondrial cell potential, highlighting the potential of these films as a promising approach in adjuvant chemotherapy.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Fluoruracila , Neoplasias Hepáticas/tratamento farmacológico , Apoptose , Cisplatino , Impressão Tridimensional
3.
Int J Nanomedicine ; 18: 1007-1029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36855538

RESUMO

Background: Imiquimod (IMQ) is an immunomodulating drug that is approved for the treatment of superficial basal cell carcinoma, actinic keratosis, external genital warts and perianal warts. However, IMQ cream (Aldara®) has several drawbacks including poor skin permeation, local toxicity, and compromised patient compliance as a topical pharmacological option. Methods: Our research aimed to develop and optimize nanostructured lipid carriers (NLCs) containing IMQ for the first time using a hybrid design of experiments approach. The optimized formulation was then incorporated into a matrix-type topical patch as an alternative dosage form for topical application and evaluated for IMQ deposition across different skin layers in comparison to the performance of the commercial product. Additionally, our work also attempted to highlight the possibility of implementing environment-friendly practices in our IMQ-NLCs formulation development by reviewing our analytical methods and experimental designs and reducing energy and solvent consumption where possible. Results: In this study, stearyl alcohol, oleic acid, Tween® 80 (polysorbate 80), and Gelucire® 50/13 (Stearoyl polyoxyl-32 glycerides) were selected for formulation development. The formulation was optimized using a 2k factorial design and a central composite design. The optimized formulation achieved the average particle size, polydispersity index, and zeta potential of 75.6 nm, 0.235, and - 30.9 mV, respectively. Subsequently, a matrix-type patch containing IMQ-NLCs was developed and achieved a statistically significant improvement in IMQ deposition in the deeper skin layers. The IMQ deposition from the patch into the dermis layer and receptor chamber was 3.3 ± 0.9 µg/cm2 and 12.3 ± 2.2 µg/cm2, while the commercial cream only deposited 1.0 ± 0.8 µg/cm2 and 1.5 ± 0.5 µg/cm2 of IMQ, respectively. Conclusion: In summary, IMQ-NLC-loaded patches represent great potential as a topical treatment option for skin cancer with improved patient compliance.


Assuntos
Nanoestruturas , Pele , Humanos , Imiquimode , Alimentos , Glicerídeos
4.
Drug Discov Today ; 28(1): 103414, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273779

RESUMO

Physiologic pH is vital for the normal functioning of tissues and varies in different parts of the body. The varying pH of the body has been exploited to design pH-sensitive smart oral, transdermal and vaginal drug delivery systems (DDS). The DDS demonstrated promising results in hard-to-treat diseases such as cancer and Helicobacter pylori infection. In some cases, a change in pH of tissues or body fluids has also been employed as a useful diagnostic biomarker. This paper aims to comprehensively review the development and applications of pH-sensitive DDS as well as recent advances in the field.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias , Humanos , Infecções por Helicobacter/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio , Portadores de Fármacos/uso terapêutico
5.
Int J Pharm ; 611: 121316, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34838623

RESUMO

Topical patches containing 5-fluorouracil (5-FU) are a feasible alternative to overcome the shortcomings of commercial cream for the treatment of non-melanoma skin cancer (NMSC). Plasticizers are a critical component of drug-in-adhesive (DIA) patches as they can significantly affect the mechanical, adhesive and drug release characteristics of the patches. Eudragit® E (EuE) is a methacrylate-based cationic copolymer capable of producing flexible and adhesive films for topical application. In this study, the effect of plasticizers on the mechanical, adhesive and 5-FU release characteristics of EuE-based patches was comprehensively evaluated. While the elongation at break (%) and adhesion of the films were significantly increased with increasing triacetin, dibutyl sebacate (DBS) and triethyl citrate (TEC) concentrations, the tensile strength showed an inverse relationship. EuE plasticized with 40% triacetin, 30% DBS or 40% w/w TEC produced elastic and adhesive films most suitable for topical application. In vitro release studies of the 5-FU-loaded patches demonstrated an initial burst release pattern during the first 10 min followed by a slow release over 120 min. In summary, this study provides important information on effect of plasticizers for preparation of EuE-based patches with desired mechanical, adhesive and release characteristics of 5-FU towards their potential application in the treatment of NMSC.


Assuntos
Preparações Farmacêuticas , Plastificantes , Adesivos , Fluoruracila , Triacetina
6.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34451884

RESUMO

As a variety of novel technologies, 3D printing has been considerably applied in the field of health care, including cancer treatment. With its fast prototyping nature, 3D printing could transform basic oncology discoveries to clinical use quickly, speed up and even revolutionise the whole drug discovery and development process. This literature review provides insight into the up-to-date applications of 3D printing on cancer research and treatment, from fundamental research and drug discovery to drug development and clinical applications. These include 3D printing of anticancer pharmaceutics, 3D-bioprinted cancer cell models and customised nonbiological medical devices. Finally, the challenges of 3D printing for cancer applications are elaborated, and the future of 3D-printed medical applications is envisioned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA