Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Adv Sci (Weinh) ; 11(6): e2306336, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072677

RESUMO

A critical challenge of existing cancer vaccines is to orchestrate the demands of antigen-enriched furnishment and optimal antigen-presentation functionality within antigen-presenting cells (APCs). Here, a complementary immunotherapeutic strategy is developed using dendritic cell (DC)-tumor hybrid cell-derived chimeric exosomes loaded with stimulator of interferon genes (STING) agonists (DT-Exo-STING) for maximized tumor-specific T-cell immunity. These chimeric carriers are furnished with broad-spectrum antigen complexes to elicit a robust T-cell-mediated inflammatory program through direct self-presentation and indirect DC-to-T immunostimulatory pathway. This chimeric exosome-assisted delivery strategy possesses the merits versus off-the-shelf cyclic dinucleotide (CDN) delivery techniques in both the brilliant tissue-homing capacity, even across the intractable blood-brain barrier (BBB), and the desired cytosolic entry for enhanced STING-activating signaling. The improved antigen-presentation performance with this nanovaccine-driven STING activation further enhances tumor-specific T-cell immunoresponse. Thus, DT-Exo-STING reverses immunosuppressive glioblastoma microenvironments to pro-inflammatory, tumoricidal states, leading to an almost obliteration of intracranial primary lesions. Significantly, an upscaling option that harnesses autologous tumor tissues for personalized DT-Exo-STING vaccines increases sensitivity to immune checkpoint blockade (ICB) therapy and exerts systemic immune memory against post-operative glioma recrudesce. These findings represent an emerging method for glioblastoma immunotherapy, warranting further exploratory development in the clinical realm.


Assuntos
Exossomos , Glioblastoma , Humanos , Glioblastoma/terapia , Linfócitos T , Apresentação de Antígeno , Imunoterapia/métodos , Microambiente Tumoral
3.
Biomaterials ; 301: 122231, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37418854

RESUMO

The challenge of wound infections post-surgery and open trauma caused by multidrug-resistant bacteria poses a constant threat to clinical treatment. As a promising antimicrobial treatment, photothermal therapy can effectively resolve the problem of drug resistance in conventional antibiotic antimicrobial therapy. Here, we report a deep-penetration functionalized cuttlefish ink nanoparticle (CINP) for photothermal and immunological therapy of wound infections. CINP is decorated with zwitterionic polymer (ZP, namely sulfobetaine methacrylate-methacrylate copolymer) to form CINP@ZP nanoparticles. Natural CINP is found to not only exhibit photothermal destruction of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), but also trigger macrophages-related innate immunity and enhance their antibacterial functions. The ZP coating on the surface of CINP enables nanoparticles to penetrate into deeply infected wound environment. In addition, CINP@ZP is further integrated into the thermosensitive Pluronic F127 gel (CINP@ZP-F127). After in situ spraying gel, CINP@ZP-F127 is also documented notable antibacterial effects in mice wound models infected with MRSA and E. coli. Collectively, this approach combining of photothermal therapy with immunotherapy can promote delivery efficiency of nanoparticles to the deep foci of infective wounds, and effectively eliminate wound infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Infecção dos Ferimentos , Camundongos , Animais , Terapia Fototérmica , Escherichia coli , Tinta , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Polímeros/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Decapodiformes
4.
Adv Sci (Weinh) ; 10(4): e2205480, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479844

RESUMO

Systematic administration of antibiotics to treat infections often leads to the rapid evolution and spread of multidrug-resistant bacteria. Here, an in situ-formed biotherapeutic gel that controls multidrug-resistant bacterial infections and accelerates wound healing is reported. This biotherapeutic gel is constructed by incorporating stable microbial communities (kombucha) capable of producing antimicrobial substances and organic acids into thermosensitive Pluronic F127 (polyethylene-polypropylene glycol) solutions. Furthermore, it is found that the stable microbial communities-based biotherapeutic gel possesses a broad antimicrobial spectrum and strong antibacterial effects in diverse pathogenic bacteria-derived xenograft infection models, as well as in patient-derived multidrug-resistant bacterial xenograft infection models. The biotherapeutic gel system considerably outperforms the commercial broad-spectrum antibacterial gel (0.1% polyaminopropyl biguanide) in pathogen removal and infected wound healing. Collectively, this biotherapeutic strategy of exploiting stable symbiotic consortiums to repel pathogens provides a paradigm for developing efficient antibacterial biomaterials and overcomes the failure of antibiotics to treat multidrug-resistant bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Poloxaleno/farmacologia , Infecções Bacterianas/tratamento farmacológico
5.
Neural Regen Res ; 18(4): 814-818, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204848

RESUMO

Neuroma formation after peripheral nerve transection often leads to severe neuropathic pain. Regenerative peripheral nerve interface has been shown to reduce painful neuroma in the clinic. However, no reports have investigated the underlying mechanisms, and no comparative animal studies on regenerative peripheral nerve interface and other means of neuroma prevention have been conducted to date. In this study, we established a rat model of left sciatic nerve transfection, and subsequently interfered with the model using the regenerative peripheral nerve interface or proximal nerve stump implantation inside a fully innervated muscle. Results showed that, compared with rats subjected to nerve stump implantation inside the muscle, rats subjected to regenerative peripheral nerve interface intervention showed greater inhibition of the proliferation of collagenous fibers and irregular regenerated axons, lower expressions of the fibrosis marker α-smooth muscle actin and the inflammatory marker sigma-1 receptor in the proximal nerve stump, lower autophagy behaviors, lower expressions of c-fos and substance P, higher expression of glial cell line-derived neurotrophic factor in the ipsilateral dorsal root ganglia. These findings suggested that regenerative peripheral nerve interface inhibits peripheral nerve injury-induced neuroma formation and neuropathic pain possibly via the upregulation of the expression of glial cell line-derived neurotrophic factor in the dorsal root ganglia and reducing neuroinflammation in the nerve stump.

6.
Bioengineered ; 13(5): 12489-12503, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35579419

RESUMO

Genome-derived microRNAs (miRNAs or miRs) control post-transcriptional gene expression critical for various cellular processes. Recently, we have invented a novel platform technology to achieve high-yield production of fully humanized, bioengineered miRNA agents (hBERAs) for research and development. This study is aimed to produce and utilize a new biologic miR-34a-5p (or miR-34a) molecule, namely, hBERA/miR-34a, to delineate the role of miR-34a-5p in the regulation of mitochondrial functions in human carcinoma cells. Bioengineered hBERA/miR-34a was produced through in vivo fermentation production and purified by anion exchange fast protein liquid chromatography. hEBRA/miR-34a was processed to target miR-34a-5p in human osteosarcoma and lung cancer cells, as determined by selective stem-loop reverse transcription quantitative polymerase chain reaction analysis. The mitochondrial inner membrane protein MPV17 like 2 (MPV17L2) was validated as a direct target for miR-34a-5p by dual luciferase reporter assay. Western blot analysis revealed that bioengineered miR-34a-5p effectively reduced MPV17L2 protein outcomes, leading to much lower levels of respiratory chain Complex I activities and intracellular ATP that were determined with specific assay kits. Moreover, Seahorse Mito Stress Test assay was conducted, and the results showed that biologic miR-34a-5p sharply reduced cancer cell mitochondrial respiration capacity, accompanied by a remarkable increase of oxidative stress and elevated apoptotic cell death, which are manifested by greater levels of reactive oxygen species and selective apoptosis biomarkers, respectively. These results demonstrate the presence and involvement of the miR-34a-5p-MPV17L2 pathway in the control of mitochondrial functions in human carcinoma cells and support the utility of novel bioengineered miRNA molecules for functional studies.


Assuntos
Produtos Biológicos , Neoplasias Ósseas , Carcinoma , Neoplasias Pulmonares , Proteínas de Membrana , MicroRNAs , Mitocôndrias , Proteínas Mitocondriais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética
7.
Front Immunol ; 13: 796606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464409

RESUMO

Tumor stemness has been reported to play important roles in cancers. However, a comprehensive analysis of tumor stemness remains to be performed to investigate the specific mechanisms and practical values of stemness in soft tissue sarcomas (STS). Here, we applied machine learning to muti-omic data of patients from TCGA-SARC and GSE21050 cohorts to reveal important roles of stemness in STS. We demonstrated limited roles of existing mRNAsi in clinical application. Therefore, based on stemness-related signatures (SRSs), we identified three stemness subtypes with distinct stemness, immune, and metabolic characteristics using consensus clustering. The low-stemness subtype had better prognosis, activated innate and adaptive immunity (e.g., infiltrating B, DC, Th1, CD8+ T, activated NK, gamma delta T cells, and M1 macrophages), more enrichment of metabolic pathways, more sites with higher methylation level, higher gene mutations, CNA burdens, and immunogenicity indicators. Furthermore, the 16 SRS-based stemness prognostic index (SPi) was developed, and we found that low-SPi patients with low stemness had better prognosis and other characteristics similar to those in the low-stemness subtype. Besides, low-stemness subtype and low-SPi patients could benefit from immunotherapy. The predictive value of SPi in immunotherapy was more accurate after the addition of MSI into SPi. MSIlowSPilow patients might be more sensitive to immunotherapy. In conclusion, we highlighted mechanisms and practical values of the stemness in STS. We also recommended the combination of MSI and SPi which is a promising tool to predict prognosis and achieve precise treatments of immunotherapy in STS.


Assuntos
Imunoterapia , Sarcoma , Humanos , Aprendizado de Máquina , Prognóstico , Sarcoma/terapia
8.
Theranostics ; 11(10): 4858-4871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754032

RESUMO

Rationale: Noncoding RNAs (ncRNAs) such as microRNAs (miRs or miRNAs) play important roles in the control of cellular processes through posttranscriptional gene regulation. However, ncRNA research is limited to utilizing RNA agents synthesized in vitro. Recombinant RNAs produced and folded in living cells shall better recapitulate biologic RNAs. Methods: Herein, we developed a novel platform for in vivo fermentation production of humanized recombinant ncRNA molecules, namely hBERAs, carrying payload miRNAs or siRNAs. Target hBERAs were purified by anion exchange FPLC method. Functions of hBERA/miRNAs were investigated in human carcinoma cells and antitumor activities were determined in orthotopic osteosarcoma xenograft spontaneous lung metastasis mouse models. Results: Proper human tRNAs were identified to couple with optimal hsa-pre-miR-34a as new fully-humanized ncRNA carriers to accommodate warhead miRNAs or siRNAs. A group of 30 target hBERAs were all heterogeneously overexpressed (each accounting for >40% of total bacterial RNA), which facilitated large-scale production (8-31 mg of individual hBERAs from 1L bacterial culture). Model hBERA/miR-34a-5p and miR-124-3p were selectively processed to warhead miRNAs in human carcinoma cells to modulate target gene expression, enhance apoptosis and inhibit invasiveness. In addition, bioengineered miR-34a-5p and miR-124-3p agents both reduced orthotopic osteosarcoma xenograft tumor growth and spontaneous pulmonary metastases significantly. Conclusion: This novel ncRNA bioengineering technology and resulting recombinant ncRNAs are unique additions to conventional technologies and tools for basic research and drug development.


Assuntos
MicroRNAs/administração & dosagem , Neoplasias/genética , RNA de Transferência/biossíntese , RNA/biossíntese , Animais , Bioengenharia , Linhagem Celular Tumoral , Proliferação de Células/genética , Fermentação , Expressão Gênica , Terapia Genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Camundongos , Terapia de Alvo Molecular , Transplante de Neoplasias , Neoplasias/terapia , Osteossarcoma/genética , Osteossarcoma/secundário , Osteossarcoma/terapia , Interferência de RNA
9.
J Pharmacol Exp Ther ; 377(3): 305-315, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33712506

RESUMO

Understanding pharmacokinetic (PK)-pharmacodynamic (PD) relationships is essential in translational research. Existing PK-PD models for combination therapy lack consideration of quantitative contributions from individual drugs, whereas interaction factor is always assigned arbitrarily to one drug and overstretched for the determination of in vivo pharmacologic synergism. Herein, we report a novel generic PK-PD model for combination therapy by considering apparent contributions from individual drugs coadministered. Doxorubicin (Dox) and sorafenib (Sor) were used as model drugs whose PK data were obtained in mice and fit to two-compartment model. Xenograft tumor growth was biphasic in mice, and PD responses were described by three-compartment transit models. This PK-PD model revealed that Sor (contribution factor = 1.62) had much greater influence on overall tumor-growth inhibition than coadministered Dox (contribution factor = 0.644), which explains the mysterious clinical findings on remarkable benefits for patients with cancer when adding Sor to Dox treatment, whereas there were none when adding Dox to Sor therapy. Furthermore, the combination index method was integrated into this predictive PK-PD model for critical determination of in vivo pharmacologic synergism that cannot be correctly defined by the interaction factor in conventional models. In addition, this new PK-PD model was able to identify optimal dosage combination (e.g., doubling experimental Sor dose and reducing Dox dose by 50%) toward much greater degree of tumor-growth inhibition (>90%), which was consistent with stronger synergy (combination index = 0.298). These findings demonstrated the utilities of this new PK-PD model and reiterated the use of valid method for the assessment of in vivo synergism. SIGNIFICANCE STATEMENT: A novel pharmacokinetic (PK)-pharmacodynamic (PD) model was developed for the assessment of combination treatment by considering contributions from individual drugs, and combination index method was incorporated to critically define in vivo synergism. A greater contribution from sorafenib to tumor-growth inhibition than that of coadministered doxorubicin was identified, offering explanation for previously inexplicable clinical observations. This PK-PD model and strategy shall have broad applications to translational research on identifying optimal dosage combinations with stronger synergy toward improved therapeutic outcomes.


Assuntos
Doxorrubicina , Terapia Combinada , Interações Medicamentosas
10.
Acta Pharm Sin B ; 11(12): 3950-3965, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024318

RESUMO

With the understanding of microRNA (miRNA or miR) functions in tumor initiation, progression, and metastasis, efforts are underway to develop new miRNA-based therapies. Very recently, we demonstrated effectiveness of a novel humanized bioengineered miR-124-3p prodrug in controlling spontaneous lung metastasis in mouse models. This study was to investigate the molecular and cellular mechanisms by which miR-124-3p controls tumor metastasis. Proteomics study identified a set of proteins selectively and significantly downregulated by bioengineered miR-124-3p in A549 cells, which were assembled into multiple cellular components critical for metastatic potential. Among them, plectin (PLEC) was verified as a new direct target for miR-124-3p that links cytoskeleton components and junctions. In miR-124-3p-treated lung cancer and osteosarcoma cells, protein levels of vimentin, talin 1 (TLN1), integrin beta-1 (ITGB1), IQ motif containing GTPase activating protein 1 (IQGAP1), cadherin 2 or N-cadherin (CDH2), and junctional adhesion molecule A (F11R or JAMA or JAM1) decreased, causing remodeling of cytoskeletons and disruption of cell-cell junctions. Furthermore, miR-124-3p sharply suppressed the formation of focal adhesion plaques, leading to reduced cell adhesion capacity. Additionally, efficacy and safety of biologic miR-124-3p therapy was established in an aggressive experimental metastasis mouse model in vivo. These results connect miR-124-3p-PLEC signaling to other elements in the control of cytoskeleton, cell junctions, and adhesion essential for cancer cell invasion and extravasation towards metastasis, and support the promise of miR-124 therapy.

12.
Front Oncol ; 10: 222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161722

RESUMO

Being the second most common type of primary bone malignancy in children and adolescents, Ewing Sarcoma (ES) encounters the dilemma of low survival rate with a lack of effective treatments. As an emerging approach to combat cancer, RNA therapeutics may expand the range of druggable targets. Since the genome-derived oncolytic microRNA-34a (miR-34a) is down-regulated in ES, restoration of miR-34a-5p expression or function represents a new therapeutic strategy which is, however, limited to the use of chemically-engineered miRNA mimics. Very recently we have developed a novel bioengineering technology using a stable non-coding RNA carrier (nCAR) to achieve high-yield production of biocompatible miRNA prodrugs, which is a great addition to current tools for the assessment of RNA therapeutics. Herein, for the first time, we investigated the biochemical pharmacology of bioengineered miR-34a-5p prodrug (nCAR/miR-34a-5p) in the control of ES using human ES cells and xenograft mouse models. The bioengineered nCAR/miR-34a-5p was precisely processed to mature miR-34a-5p in ES cells and subsequently suppressed cell proliferation, attributable to the enhancement of apoptosis and induction of G2 cell cycle arrest through downregulation of SIRT-1, BCL-2 and CDK6 protein levels. Furthermore, systemic administration of nCAR/miR-34a-5p dramatically suppressed the ES xenograft tumor growth in vivo while showing biocompatibility. In addition, the antitumor effect of bioengineered nCAR/miR-34a-5p was associated with a lower degree of tumoral cell proliferation and greater extent of apoptosis. These findings demonstrate the efficacy of bioengineered miR-34a-5p prodrug for the treatment of ES and support the development of miRNA therapeutics using biocompatible bioengineered miRNA prodrugs.

13.
Acta Pharm Sin B ; 10(1): 159-170, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993313

RESUMO

MicroRNAs (miRNAs or miRs) are small noncoding RNAs derived from genome to control target gene expression. Recently we have developed a novel platform permitting high-yield production of bioengineered miRNA agents (BERA). This study is to produce and utilize novel fully-humanized BERA/miR-328-3p molecule (hBERA/miR-328) to delineate the role of miR-328-3p in controlling nutrient uptake essential for cell metabolism. We first demonstrated successful high-level expression of hBERA/miR-328 in bacteria and purification to high degree of homogeneity (>98%). Biologic miR-328-3p prodrug was selectively processed to miR-328-3p to suppress the growth of highly-proliferative human osteosarcoma (OS) cells. Besides glucose transporter protein type 1, gene symbol solute carrier family 2 member 1 (GLUT1/SLC2A1), we identified and verified large neutral amino acid transporter 1, gene symbol solute carrier family 7 member 5 (LAT1/SLC7A5) as a direct target for miR-328-3p. While reduction of LAT1 protein levels by miR-328-3p did not alter homeostasis of amino acids within OS cells, suppression of GLUT1 led to a significantly lower glucose uptake and decline in intracellular levels of glucose and glycolytic metabolite lactate. Moreover, combination treatment with hBERA/miR-328 and cisplatin or doxorubicin exerted a strong synergism in the inhibition of OS cell proliferation. These findings support the utility of novel bioengineered RNA molecules and establish an important role of miR-328-3p in the control of nutrient transport and homeostasis behind cancer metabolism.

14.
Drug Metab Dispos ; 46(1): 2-10, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061583

RESUMO

The nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a transcription factor in the regulation of many oxidative enzymes and efflux transporters critical for oxidative stress and cellular defense against xenobiotics. NRF2 is dysregulated in patient osteosarcoma (OS) tissues and correlates with therapeutic outcomes. Nevertheless, research on the NRF2 regulatory pathways and its potential as a therapeutic target is limited to the use of synthetic small interfering RNA (siRNA) carrying extensive artificial modifications. Herein, we report successful high-level expression of recombinant siRNA against NRF2 in Escherichia coli using our newly established noncoding RNA bioengineering technology, which was purified to >99% homogeneity using an anion-exchange fast protein liquid chromatography method. Bioengineered NRF2-siRNA was able to significantly knock down NRF2 mRNA and protein levels in human OS 143B and MG63 cells, and subsequently suppressed the expression of NRF2-regulated oxidative enzymes [heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1] and elevated intracellular levels of reactive oxygen species. In addition, recombinant NRF2-siRNA was effective to sensitize both 143B and MG63 cells to doxorubicin, cisplatin, and sorafenib, which was associated with significant downregulation of NRF2-targeted ATP-binding cassette (ABC) efflux transporters (ABCC3, ABCC4, and ABCG2). These findings support that targeting NRF2 signaling pathways may improve the sensitivity of cancer cells to chemotherapy, and bioengineered siRNA molecules should be added to current tools for related research.


Assuntos
Antineoplásicos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Osteossarcoma/tratamento farmacológico , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Bioengenharia/métodos , Linhagem Celular Tumoral , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes/métodos , Heme Oxigenase-1/metabolismo , Humanos , Terapia de Alvo Molecular/métodos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteossarcoma/patologia , Estresse Oxidativo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
15.
Oncol Rep ; 38(1): 336-342, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28534992

RESUMO

Recently, hypoxia inducible factor-1 (HIF-1) was reported to be correlated with isocitrate dehydrogenase 1 (IDH-1) in several types of tumors. However, the expression and significance of HIF-1 and IDH-1 in osteosarcoma is still unknown. In the present study, the expression levels of IDH-1 and HIF-1α in 35 formalin-fixed paraffin-embedded sections from osteosarcoma patients were investigated by immunohistochemistry. The expression levels of IDH-1 and HIF-1α in human osteosarcoma cell lines (MG-63 and 143B) were further detected by western blotting under normal and hypoxic conditions. In addition, HIF-1α was downregulated via lentiviral vector­mediated RNA interference (RNAi) in the MG-63 human osteosarcoma cell line. The results revealed that HIF-1α was negatively correlated with IDH-1 in the osteosarcoma tissues. Both in MG-63 and 143B cell lines, the expression of HIF-1α was increased while IDH-1 was decreased under a hypoxic condition compared to normal conditions. HIF-1α downregulation promoted IDH-1 expression in the MG-63 cell line under either normal or hypoxic conditions. In conclusion, our findings suggest that HIF-1α inhibits IDH-1 in osteosarcoma and consequently increases the incidence of osteosarcoma.


Assuntos
Neoplasias Ósseas/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isocitrato Desidrogenase/antagonistas & inibidores , Osteossarcoma/patologia , Adulto , Apoptose , Neoplasias Ósseas/metabolismo , Proliferação de Células , Feminino , Humanos , Masculino , Osteossarcoma/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Adulto Jovem
16.
Oncotarget ; 8(19): 30742-30755, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28415566

RESUMO

Metastasis is a major cause of mortality for cancer patients and remains as the greatest challenge in cancer therapy. Driven by multiple factors, metastasis may not be controlled by the inhibition of single target. This study was aimed at assessing the hypothesis that drugs could be rationally combined to co-target critical DNA, RNA and protein molecules to achieve "saturation attack" against metastasis. Independent actions of the model drugs DNA-intercalating doxorubicin, RNA-interfering miR-34a and protein-inhibiting sorafenib on DNA replication, RNA translation and protein kinase signaling in highly metastatic, human osteosarcoma 143B cells were demonstrated by the increase of γH2A.X foci formation, reduction of c-MET expression and inhibition of Erk1/2 phosphorylation, respectively, and optimal effects were found for triple-drug combination. Consequently, triple-drug treatment showed a strong synergism in suppressing 143B cell proliferation and the greatest effects in reducing cell invasion. Compared to single- and dual-drug treatment, triple-drug therapy suppressed pulmonary metastases and orthotopic osteosarcoma progression to significantly greater degrees in orthotopic osteosarcoma xenograft/spontaneous metastases mouse models, while none showed significant toxicity. In addition, triple-drug therapy improved the overall survival to the greatest extent in experimental metastases mouse models. These findings demonstrate co-targeting of DNA, RNA and protein molecules as a novel therapeutic strategy for the treatment of metastasis.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Pulmonares/secundário , Terapia de Alvo Molecular , Osteossarcoma/patologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Terapia Combinada , DNA , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Camundongos , MicroRNAs/genética , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Osteossarcoma/genética , Osteossarcoma/metabolismo , Compostos de Fenilureia/farmacologia , RNA , Sorafenibe , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Sci Rep ; 6: 26611, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27216562

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumor in children, and microRNA-34a (miR-34a) replacement therapy represents a new treatment strategy. This study was to define the effectiveness and safety profiles of a novel bioengineered miR-34a prodrug in orthotopic OS xenograft tumor mouse model. Highly purified pre-miR-34a prodrug significantly inhibited the proliferation of human 143B and MG-63 cells in a dose dependent manner and to much greater degrees than controls, which was attributed to induction of apoptosis and G2 cell cycle arrest. Inhibition of OS cell growth and invasion were associated with release of high levels of mature miR-34a from pre-miR-34a prodrug and consequently reduction of protein levels of many miR-34a target genes including SIRT1, BCL2, c-MET, and CDK6. Furthermore, intravenous administration of in vivo-jetPEI formulated miR-34a prodrug significantly reduced OS tumor growth in orthotopic xenograft mouse models. In addition, mouse blood chemistry profiles indicated that therapeutic doses of bioengineered miR-34a prodrug were well tolerated in these animals. The results demonstrated that bioengineered miR-34a prodrug was effective to control OS tumor growth which involved the induction of apoptosis and cell cycle arrest, supporting the development of bioengineered RNAs as a novel class of large molecule therapeutic agents.


Assuntos
Neoplasias Ósseas , Engenharia Genética , MicroRNAs , Proteínas de Neoplasias , Osteossarcoma , Pró-Fármacos/farmacologia , Animais , Neoplasias Ósseas/dietoterapia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Nus , MicroRNAs/genética , MicroRNAs/farmacologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncol Rep ; 35(4): 2277-85, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26782630

RESUMO

Isocitrate dehydrogenase 2 (IDH2) is a mitochondrial NADP-dependent isocitrate dehydrogenase. It is considered to be a novel tumor suppressor in several types of tumors. However, the role and related mechanism of IDH2 in osteosarcoma remain unknown. The expression and significance of IDH2 were investigated by immunohistochemistry in formalin-fixed paraffin sections from 44 osteosarcoma patients. IDH2 was downregulated via lentiviral vector­mediated RNA interference (RNAi) in the Saos-2 and MG-63 human osteosarcoma cell lines. The effect of IDH2 downregulation on human osteosarcoma was studied in vitro by MTT, flow cytometry and invasion assays. Nuclear factor-κB (NF-κB) and matrix metalloproteinase-9 (MMP-9) assays were also used to study the likely molecular mechanism of IDH2 downregulation on the malignant progression of osteosarcoma cells. The results revealed that the expression of IDH2 was inversely correlated with pathological grade and metastasis in osteosarcoma. IDH2 downregulation promoted a pro-proliferative effect on the Saos-2 and MG-63 osteosarcoma cell lines. IDH2 downregulation accelerated cell cycle progression from S to G2/M phase. The pro-proliferative effect induced by IDH2 downregulation may be ascribed to increased NF-κB activity via IκBα phosphorylation. The invasive activity of osteosarcoma cells was also significantly promoted by IDH2 downregulation and may result from elevated MMP-9 activity. In conclusion, IDH2 downregulation may exacerbate malignant progression via increased NF-κB and MMP-9 activity and may implicate the potential biological importance of IDH2 targeting in osteosarcoma cells. Downregulation of IDH2 exacerbates the malignant progression of osteosarcoma cells via increased NF-κB and MMP-9 activation.


Assuntos
Neoplasias Ósseas/patologia , Regulação para Baixo , Isocitrato Desidrogenase/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Osteossarcoma/patologia , Adolescente , Adulto , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Criança , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Osteossarcoma/metabolismo , Adulto Jovem
19.
Biochem Pharmacol ; 98(4): 602-13, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26518752

RESUMO

Osteosarcoma (OS) is the most common form of primary malignant bone tumor and prevalent among children and young adults. Recently we have established a novel approach to bioengineering large quantity of microRNA-34a (miR-34a) prodrug for miRNA replacement therapy. This study is to evaluate combination treatment with miR-34a prodrug and doxorubicin, which may synergistically suppress human OS cell growth via RNA interference and DNA intercalation. Synergistic effects were indeed obvious between miR-34a prodrug and doxorubicin for the suppression of OS cell proliferation, as defined by Chou-Talalay method. The strongest antiproliferative synergism was achieved when both agents were administered simultaneously to the cells at early stage, which was associated with much greater degrees of late apoptosis, necrosis, and G2 cell cycle arrest. Alteration of OS cellular processes and invasion capacity was linked to the reduction of protein levels of miR-34a targeted (proto-)oncogenes including SIRT1, c-MET, and CDK6. Moreover, orthotopic OS xenograft tumor growth was repressed to a significantly greater degree in mouse models when miR-34a prodrug and doxorubicin were co-administered intravenously. In addition, multiple doses of miR-34a prodrug and doxorubicin had no or minimal effects on mouse blood chemistry profiles. The results demonstrate that combination of doxorubicin chemotherapy and miR-34a replacement therapy produces synergistic antiproliferative effects and it is more effective than monotherapy in suppressing OS xenograft tumor growth. These findings support the development of mechanism-based combination therapy to combat OS and bioengineered miR-34a prodrug represents a new natural miRNA agent.


Assuntos
Bioengenharia/métodos , Neoplasias Ósseas/tratamento farmacológico , Doxorrubicina/administração & dosagem , MicroRNAs/administração & dosagem , Osteossarcoma/tratamento farmacológico , Pró-Fármacos/administração & dosagem , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Inibidores do Crescimento/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Osteossarcoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA