Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Adv Healthc Mater ; : e2401260, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38953344

RESUMO

Polyetheretherketone (PEEK), a bioinert polymer known for its mechanical properties similar to bone, is capable of averting stress shielding. Due to these attributes, it finds applications in diverse fields like orthopedics, encompassing cervical disc replacement for the neck and spine, along with dentistry and plastic surgery. However, due to insufficient bonding with bone, various methods such as hydroxyapatite (HA) coating on the surface are attempted. Nonetheless, the interface between the polymer and ceramic, two different materials, tended to delaminate after transplantation, posing challenges in preventing implant escape or dislodgement. This research delves into the laser-driven hydroxyapatite penetration-synthesis technique. Differing from conventional coating methods that bond layers of dissimilar materials like HA and PEEK, this technology focuses on synthesizing and infiltrating ionized HA within the PEEK substrate resulting in an interface-free HA-PEEK surface. Conversely, HA-PEEK with this technology applied achieves complete, gap-free direct bone-implant integration.  Our research involved the analysis of various aspects. By means of these, we quantitatively assesed the enhanced bone bonding characteristics of HA-PEEK surfaces treated with this approach and offered and explanation for the mechanism responsible for direct bone integration.

2.
J Extracell Biol ; 3(2): e141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38939899

RESUMO

Epithelial-mesenchymal transition (EMT) is associated with tumorigenesis and drug resistance. The Rab superfamily of small G-proteins plays a role in regulating cell cytoskeleton and vesicle transport. However, it is not yet clear how the Rab family contributes to cancer progression by participating in EMT. By analysing various in silico datasets, we identified a statistically significant increase in RAB31 expression in the oxaliplatin-resistant group compared to that in the parental or other chemotherapy drug groups. Our findings highlight RAB31's powerful effect on colorectal cancer cell lines when compared with other family members. In a study that analysed multiple online meta-databases, RAB31 RNA levels were continually detected in colorectal tissue arrays. Additionally, RAB31 protein levels were correlated with various clinical parameters in clinical databases and were associated with negative prognoses for patients. RAB31 expression levels in all three probes were calculated using a computer algorithm and were found to be positively correlated with EMT scores. The expression of the epithelial-type marker CDH1 was suppressed in RAB31 overexpression models, whereas the expression of the mesenchymal-type markers SNAI1 and SNAI2 increased. Notably, RAB31-induced EMT and drug resistance are dependent on extracellular vesicle (EV) secretion. Interactome analysis confirmed that RAB31/AGR2 axis-mediated exocytosis was responsible for maintaining colorectal cell resistance to oxaliplatin. Our study concluded that RAB31 alters the sensitivity of oxaliplatin, a supplementary chemotherapy approach, and is an independent prognostic factor that can be used in the treatment of colorectal cancer.

3.
Biochem Biophys Res Commun ; 720: 150066, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749193

RESUMO

Alveolar and interstitial macrophages play crucial roles in eradicating pathogens and transformed cells in the lungs. The immune checkpoint CD47, found on normal and malignant cells, interacts with the SIRPα ligand on macrophages, inhibiting phagocytosis, antigen presentation, and promoting immune evasion. In this study, we demonstrated that CD47 is not only a transmembrane protein, but that it is also highly concentrated in extracellular vesicles from lung cancer cell lines and patient plasma. Abundant CD47 was observed in the cytoplasm of lung cancer cells, aligning with our finding that it was packed into extracellular vesicles for physiological and pathological functions. In our clinical cohort, extracellular vesicle CD47 was significantly higher in the patients with early-stage lung cancer, emphasizing innate immunity inactivation in early tumor progression. To validate our hypothesis, we established an orthotopic xenograft model mimicking lung cancer development, which showed increased serum soluble CD47 and elevated IL-10/TNF-α ratio, indicating an immune-suppressive tumor microenvironment. CD47 expression led to reduced tumor-infiltrating macrophages during progression, while there was a post-xenograft increase in tumor-associated macrophages. In conclusion, CD47 is pivotal in early lung cancer progression, with soluble CD47 emerging as a key pathological effector.


Assuntos
Antígeno CD47 , Progressão da Doença , Neoplasias Pulmonares , Antígeno CD47/metabolismo , Antígeno CD47/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Humanos , Animais , Linhagem Celular Tumoral , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Camundongos , Evasão Tumoral , Evasão da Resposta Imune , Microambiente Tumoral/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Feminino , Estadiamento de Neoplasias
4.
Cell Commun Signal ; 22(1): 266, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741139

RESUMO

Glioblastoma (GBM) is a type of brain cancer categorized as a high-grade glioma. GBM is characterized by limited treatment options, low patient survival rates, and abnormal serotonin metabolism. Previous studies have investigated the tumor suppressor function of aldolase C (ALDOC), a glycolytic enzyme in GBM. However, it is unclear how ALDOC regulates production of serotonin and its associated receptors, HTRs. In this study, we analyzed ALDOC mRNA levels and methylation status using sequencing data and in silico datasets. Furthermore, we investigated pathways, phenotypes, and drug effects using cell and mouse models. Our results suggest that loss of ALDOC function in GBM promotes tumor cell invasion and migration. We observed that hypermethylation, which results in loss of ALDOC expression, is associated with serotonin hypersecretion and the inhibition of PPAR-γ signaling. Using several omics datasets, we present evidence that ALDOC regulates serotonin levels and safeguards PPAR-γ against serotonin metabolism mediated by 5-HT, which leads to a reduction in PPAR-γ expression. PPAR-γ activation inhibits serotonin release by HTR and diminishes GBM tumor growth in our cellular and animal models. Importantly, research has demonstrated that PPAR-γ agonists prolong animal survival rates and increase the efficacy of temozolomide in an orthotopic brain model of GBM. The relationship and function of the ALDOC-PPAR-γ axis could serve as a potential prognostic indicator. Furthermore, PPAR-γ agonists offer a new treatment alternative for glioblastoma multiforme (GBM).


Assuntos
Glioblastoma , PPAR gama , Temozolomida , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Animais , PPAR gama/metabolismo , Camundongos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Progressão da Doença , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Agonistas PPAR-gama
5.
Anal Bioanal Chem ; 416(17): 3887-3905, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38592442

RESUMO

Photoluminescent materials (PLNs) are photoluminescent materials that can absorb external excitation light, store it, and slowly release it in the form of light in the dark to achieve long-term luminescence. Developing near-infrared (NIR) PLNs is critical to improving long-afterglow luminescent materials. Because they excite in vitro, NIR-PLNs have the potential to avoid interference from in vivo autofluorescence in biomedical applications. These materials are promising for biosensing and bioimaging applications by exploiting the near-infrared biological window. First, we discuss the biomedical applications of PLNs in the first near-infrared window (NIR-I, 700-900 nm), which have been widely developed and specifically introduce biosensors and imaging reagents. However, the light in this area still suffers from significant light scattering and tissue autofluorescence, which will affect the imaging quality. Over time, fluorescence imaging technology in the second near-infrared window (NIR-II, 1000-1700 nm) has also begun to develop rapidly. NIR-II fluorescence imaging has the advantages of low light scattering loss, high tissue penetration depth, high imaging resolution, and high signal-to-noise ratio, and it shows broad application prospects in biological analysis and medical diagnosis. This critical review collected and sorted articles from the past 5 years and introduced their respective fluorescence imaging technologies and backgrounds based on the definitions of NIR-I and NIR-II. We also analyzed the current advantages and dilemmas that remain to be solved. Herein, we also suggested specific approaches NIR-PLNs can use to improve the quality and be more applicable in cancer research.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Neoplasias , Imagem Óptica , Humanos , Técnicas Biossensoriais/métodos , Neoplasias/diagnóstico por imagem , Nanopartículas/química , Imagem Óptica/métodos , Animais , Substâncias Luminescentes/química , Raios Infravermelhos
6.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542339

RESUMO

Myosin, a superfamily of motor proteins, obtain the energy they require for movement from ATP hydrolysis to perform various functions by binding to actin filaments. Extensive studies have clarified the diverse functions performed by the different isoforms of myosin. However, the unavailability of resolved structures has made it difficult to understand the way in which their mechanochemical cycle and structural diversity give rise to distinct functional properties. With this study, we seek to further our understanding of the structural organization of the myosin 7A motor domain by modeling the tertiary structure of myosin 7A based on its primary sequence. Multiple sequence alignment and a comparison of the models of different myosin isoforms and myosin 7A not only enabled us to identify highly conserved nucleotide binding sites but also to predict actin binding sites. In addition, the actomyosin-7A complex was predicted from the protein-protein interaction model, from which the core interface sites of actin and the myosin 7A motor domain were defined. Finally, sequence alignment and the comparison of models were used to suggest the possibility of a pliant region existing between the converter domain and lever arm of myosin 7A. The results of this study provide insights into the structure of myosin 7A that could serve as a framework for higher resolution studies in future.


Assuntos
Actinas , Miosinas , Actinas/metabolismo , Alinhamento de Sequência , Estrutura Terciária de Proteína , Miosinas/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167019, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38211726

RESUMO

Immunotherapy is a promising therapeutic strategy for cancer. However, it shows limited efficacy against certain tumor types. The activation of innate immunity can suppress tumors by mitigating inflammatory and malignant behaviors through immune surveillance. The tumor microenvironment, which is composed of immune cells and cancer cells, plays a crucial role in determining the outcomes of immunotherapy. Relying solely on immune checkpoint inhibitors is not an optimal approach. Instead, there is a need to consider the use of a combination of immune checkpoint inhibitors with other modulators of the innate immune system to improve the tumor microenvironment. This can be achieved through methods such as immune cell antigen presentation and recognition. In this review, we delve into the significance of innate immune cells in tumor regression, as well as the role of the interaction of tumor cells with innate immune cells in evading host immune surveillance. These findings pave the way for the next chapter in the field of immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Sistema Imunitário , Imunidade Inata , Imunoterapia , Microambiente Tumoral
8.
Biochem Biophys Res Commun ; 696: 149489, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38244313

RESUMO

Lung cancer has a high incidence rate and requires more effective treatment strategies and drug options for clinical patients. EGFR is a common genetic alteration event in lung cancer that affects patient survival and drug strategy. Our study discovered aberrant aldolase A (ALDOA) expression and dysfunction in lung cancer patients with EGFR mutations. In addition to investigating relevant metabolic processes like glucose uptake, lactate production, and ATPase activity, we examined multi-omics profiles (transcriptomics, proteomics, and pull-down assays). It was observed that phosphodiesterase 3A (PDE3A) enzyme and ALDOA exhibit correlation, and furthermore, they impact M2 macrophage polarization through ß-catenin and downstream ID3. In addition to demonstrating the aforementioned mechanism of action, our experiments discovered that the PDE3 inhibitor trequinsin has a substantial impact on lung cancer cell lines with EGFR mutants. The trequinsin medication was found to decrease the M2 macrophage polarization status and several cancer phenotypes, in addition to transduction. These findings have potential prognostic and therapeutic applications for clinical patients with EGFR mutation and lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Frutose-Bifosfato Aldolase/genética , beta Catenina/genética , beta Catenina/metabolismo , Transdução de Sinais/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Linhagem Celular Tumoral , Mutação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Inibidoras de Diferenciação/genética
9.
Phytother Res ; 38(3): 1235-1244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176954

RESUMO

Since the silent information regulation 2 homolog-1 (sirtuin, SIRT1) and glucose transporter 1 (GLUT1) are known to modulate cancer cell metabolism and proliferation, the role of SIRT1/GLUT1 signaling was investigated in the apoptotic effect of Leptosidin from Coreopsis grandiflora in DU145 and PC3 human prostate cancer (PCa) cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis, Western blotting, cBioportal correlation analysis, and co-immunoprecipitation were used in this work. Leptosidin showed cytotoxicity, augmented sub-G1 population, and abrogated the expression of pro-poly (ADP-ribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (pro-caspase3) in DU145 and PC3 cells. Also, Leptosidin inhibited the expression of SIRT1, GLUT1, pyruvate kinase isozymes M2 (PKM2), Hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA) in DU145 and PC3 cells along with disrupted binding of SIRT1 and GLUT1. Consistently, Leptosidin curtailed lactate, glucose, and ATP in DU145 and PC3 cells. Furthermore, SIRT1 depletion enhanced the decrease of GLUT1, LDHA, and pro-Cas3 by Leptosidin in treated DU145 cells, while pyruvate suppressed the ability of Leptosidin in DU145 cells. These findings suggest that Leptosidin induces apoptosis via inhibition of glycolysis and SIRT1/GLUT1 signaling axis in PCa cells.


Assuntos
Benzofuranos , Neoplasias da Próstata , Sirtuína 1 , Humanos , Masculino , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Transportador de Glucose Tipo 1/metabolismo , Glicólise/fisiologia , Neoplasias da Próstata/metabolismo , Sirtuína 1/metabolismo
10.
J Asian Nat Prod Res ; 26(4): 534-540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37639617

RESUMO

Based on the One Strain-Many Compounds (OSMAC) strategy, the secondary metabolites of Phomopsis lithocarpus FS508 were investigated. As a result, a new secondary metabolite, 4-methoxy-3-[4-(acetyloxy)-3-methyl-2-butenyl]benzoic acid (1) as well as eleven known compounds were isolated from the fermentation product of the strain FS508. Their structures were determined by NMR, IR, UV, and MS spectroscopic data analyses. All the isolated compounds were evaluated for cytotoxic and anti-inflammatory activities. Among them, compounds 3 and 9 displayed potent cytotoxicity against HepG-2 cell line, and compounds 2, 3 and 12 showed significant anti-inflammatory activities.


Assuntos
Antineoplásicos , Ascomicetos , Phomopsis , Ascomicetos/química , Linhagem Celular Tumoral , Antineoplásicos/química , Anti-Inflamatórios/farmacologia , Estrutura Molecular
11.
Neuro Oncol ; 26(2): 266-278, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37715782

RESUMO

BACKGROUND: Neuroligin 4 X-linked (NLGN4X) harbors a human leukocyte antigen (HLA)-A*02-restricted tumor-associated antigen, overexpressed in human gliomas, that was found to induce specific cytotoxic T cell responses following multi-peptide vaccination in patients with newly diagnosed glioblastoma. METHODS: T cell receptor (TCR) discovery was performed using droplet-based single-cell TCR sequencing of NLGN4X-tetramer-sorted T cells postvaccination. The identified TCR was delivered to Jurkat T cells and primary human T cells (NLGN4X-TCR-T). Functional profiling of NLGN4X-TCR-T was performed by flow cytometry and cytotoxicity assays. Therapeutic efficacy of intracerebroventricular NLGN4X-TCR-T was assessed in NOD scid gamma (NSG) major histocompatibility complex (MHC) I/II knockout (KO) (NSG MHC I/II KO) mice bearing NLGN4X-expressing experimental gliomas. RESULTS: An HLA-A*02-restricted vaccine-induced T cell receptor specifically binding NLGN4X131-139 was applied for preclinical therapeutic use. Reactivity, cytotoxicity, and polyfunctionality of this NLGN4X-specific TCR are demonstrated in various cellular models. Intracerebroventricular administration of NLGN4X-TCR-T prolongs survival and leads to an objective response rate of 44.4% in experimental glioma-bearing NSG MHC I/II KO mice compared to 0.0% in control groups. CONCLUSION: NLGN4X-TCR-T demonstrate efficacy in a preclinical glioblastoma model. On a global scale, we provide the first evidence for the therapeutic retrieval of vaccine-induced human TCRs for the off-the-shelf treatment of glioblastoma patients.Keywords cell therapy | glioblastoma | T cell receptor | tumor antigen.


Assuntos
Vacinas Anticâncer , Glioblastoma , Camundongos , Animais , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Vacinas Anticâncer/uso terapêutico , Vacinas de Subunidades Antigênicas , Receptores de Antígenos de Linfócitos T , Linfócitos T , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular Neuronais
13.
Infection ; 52(3): 955-983, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38133713

RESUMO

PURPOSE: The aim of this study was to elucidate the factors associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that may initiate cytokine cascades and correlate the clinical characteristics of patients with coronavirus disease 2019 (COVID-19) with their serum cytokine profiles. METHODS: Recombinant baculoviruses displaying SARS-CoV-2 spike or nucleocapsid protein were constructed and transfected into A549 cells and THP-1-derived macrophages, to determine which protein initiate cytokine release. SARS-CoV-2-specific antibody titers and cytokine profiles of patients with COVID-19 were determined, and the results were associated with their clinical characteristics, such as development of pneumonia or length of hospital stay. RESULTS: The SARS-CoV-2 nucleocapsid protein, rather than the spike protein, triggers lung epithelial A549 cells to express IP-10, RANTES, IL-16, MIP-1α, basic FGF, eotaxin, IL-15, PDGF-BB, TRAIL, VEGF-A, and IL-5. Additionally, serum CTACK, basic FGF, GRO-α, IL-1α, IL-1RA, IL-2Rα, IL-9, IL-15, IL-16, IL-18, IP-10, M-CSF, MIF, MIG, RANTES, SCGF-ß, SDF-1α, TNF-α, TNF-ß, VEGF, PDGF-BB, TRAIL, ß-NGF, eotaxin, GM-CSF, IFN-α2, INF-γ, and MCP-1 levels were considerably increased in patients with COVID-19. Among them, patients with pneumonia had higher serum IP-10 and M-CSF levels than patients without. Patients requiring less than 3 weeks to show negative COVID-19 tests after contracting COVID-19 had higher serum IP-10 levels than the remaining patients. CONCLUSION: Our study revealed that nucleocapsid protein, lung epithelial cells, and IP-10 may be potential targets for the development of new strategies to prevent, or control, severe COVID-19.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Citocinas , Células Epiteliais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/imunologia , COVID-19/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , SARS-CoV-2/imunologia , Citocinas/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Células Epiteliais/virologia , Células Epiteliais/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Idoso , Células A549 , Pulmão/patologia , Pulmão/imunologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/sangue , Adulto , Anticorpos Antivirais/sangue , Fosfoproteínas
14.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 71-79, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37715423

RESUMO

The roles of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3C (A3C) in various human malignancies are not consistent. A3C expression is correlated with early-stage breast cancer and is presented as a good prognostic factor; however, it induces fewer therapeutic effects of cytotoxic drugs in low-grade gliomas. To explore the impact of A3C on gliomas, a statistical analysis of several public databases was conducted. The results showed that enhanced A3C expression was associated with advanced tumor grades and poor expression of prognostic factors. Similarly, our in vitro study revealed that glioblastoma (GBM) cell lines had higher A3C mRNA and protein expression than that of normal brain tissue cDNA and lysates. We first performed an immunohistochemical stain (IHC) to prove that gliomas with high A3C expression presented the wild type-Isocitrate dehydrogenase 1 (IDH1), and they had an unfavorable prognosis in human glioma tissues. In addition, the oncological factors associated with A3C expression suggested that DNA repair pathways are important mechanisms for inducing tumorigenesis and chemoresistance in gliomas. Moreover, a significant correlation was observed between A3C expression and proteolipid protein 2  (PLP2). Reactive oxygen species (ROS) -activated PLP2 prevents DNA damage-induced cell apoptosis. Compared to high immunostaining scores for A3C and/or PLP2 expression, combined low immunostaining scores for A3C and PLP2 correlated with improved survival in gliomas; however, the detailed mechanism is to be elucidated. In conclusion, our results not only confirmed A3C played an important role in glioma development, but the A3C IHC test could successfully predict the therapeutic effects and disease prognosis.


Assuntos
Glioblastoma , Feminino , Humanos , Apoptose , Encéfalo , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Proteínas com Domínio MARVEL , Proteolipídeos , Prognóstico
15.
Children (Basel) ; 10(8)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37628351

RESUMO

Hemihyperplasia is a kind of regional body growth asymmetry and can be a symptom of several congenital disorders and tumorous conditions. Torticollis is most commonly caused by asymmetric hypertrophy of the sternocleidomastoid muscle. Herein, we report a case of hemihyperplasia in an infant with ipsilateral torticollis. The baby was evaluated using physical examination and ultrasonography. We observed significant right-side torticollis that was ipsilateral to congenital right-side hemihypertrophy. No abnormal tumorous conditions were found during the evaluation in the pediatrics department. The patient was treated with physical therapy and exhibited mild improvements in torticollis and hemihyperplasia.

16.
Int J Biol Sci ; 19(9): 2772-2786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324940

RESUMO

Cholangiocarcinoma (CCA) exhibits aggressive biological behavior and a poor prognosis. Gemcitabine (GEM)-based chemotherapy is the first-line chemotherapy for advanced CCA but has a response rate of only 20-30%. Therefore, investigating treatments to overcome GEM resistance in advanced CCA is crucial. Among mucin (MUC) family members, MUC4 showed the greatest increase in the resistant versus parental sublines. MUC4 was upregulated in whole-cell lysates and conditioned media from gemcitabine-resistant (GR) CCA sublines. MUC4 mediated GEM resistance by activating AKT signaling in GR CCA cells. The MUC4-AKT axis induced BAX S184 phosphorylation to inhibit apoptosis and downregulated GEM transporter human equilibrative nucleoside transporter 1 (hENT1) expression. The combination of AKT inhibitors and GEM or afatinib overcame GEM resistance in CCA. In vivo, capivasertib (an AKT inhibitor) increased GEM sensitivity in GR cells. MUC4 promoted EGFR and HER2 activation to mediate GEM resistance. Finally, MUC4 expression in patient plasma correlated with MUC4 expression. Paraffin-embedded specimens from non-responders expressed significantly more MUC4 than did those from responders, and this upregulation was associated with poor progression-free survival and overall survival. In GR CCA, high MUC4 expression promotes sustained EGFR/HER2 signaling and AKT activation. The combination of AKT inhibitors with GEM or afatinib might overcome GEM resistance.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias Pancreáticas , Humanos , Afatinib/uso terapêutico , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB , Gencitabina , Mucina-4/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt
17.
Cancer Lett ; 563: 216179, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061122

RESUMO

The glucose transporter family (GLUT) consists of fourteen members. It is responsible for glucose homeostasis and glucose transport from the extracellular space to the cell cytoplasm to further cascade catalysis. GLUT proteins are encoded by the solute carrier family 2 (SLC2) genes and are members of the major facilitator superfamily of membrane transporters. Moreover, different GLUTs also have their transporter kinetics and distribution, so each GLUT member has its uniqueness and importance to play essential roles in human physiology. Evidence from many studies in the field of diabetes showed that GLUT4 travels between the plasma membrane and intracellular vesicles (GLUT4-storage vesicles, GSVs) and that the PI3K/Akt pathway regulates this activity in an insulin-dependent manner or by the AMPK pathway in response to muscle contraction. Moreover, some published results also pointed out that GLUT4 mediates insulin-dependent glucose uptake. Thus, dysfunction of GLUT4 can induce insulin resistance, metabolic reprogramming in diverse chronic diseases, inflammation, and cancer. In addition to the relationship between GLUT4 and insulin response, recent studies also referred to the potential upstream transcription factors that can bind to the promoter region of GLUT4 to regulating downstream signals. Combined all of the evidence, we conclude that GLUT4 has shown valuable unknown functions and is of clinical significance in cancers, which deserves our in-depth discussion and design compounds by structure basis to achieve therapeutic effects. Thus, we intend to write up a most updated review manuscript to include the most recent and critical research findings elucidating how and why GLUT4 plays an essential role in carcinogenesis, which may have broad interests and impacts on this field.


Assuntos
Insulina , Neoplasias , Humanos , Membrana Celular/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicólise , Insulina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico
19.
In Vivo ; 37(3): 1085-1092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37103085

RESUMO

BACKGROUND/AIM: Breast cancer stem cells (BCSCs) are involved in the development of breast cancer and contribute to therapeutic resistance. This study aimed to investigate the anticancer stem cell (CSC) mechanism of 13-Oxo-9Z,11E-octadecadienoic acid (13-Oxo-ODE) as a potent CSC inhibitor in breast cancer. MATERIALS AND METHODS: The effects of 13-Oxo-ODE on BCSCs were evaluated using a mammosphere formation assay, CD44high/CD24low analysis, aldehyde dehydrogenase (ALDH) assay, apoptosis assay, quantitative real-time PCR, and western blotting. RESULTS: We found that 13-Oxo-ODE suppressed cell proliferation, CSC formation, and mammosphere proliferation and increased apoptosis of BCSCs. Additionally, 13-Oxo-ODE reduced the subpopulation of CD44high/CD24low cells and ALDH expression. Furthermore, 13-Oxo-ODE decreased c-myc gene expression. These results suggest that 13-Oxo-ODE has potential as a natural inhibitor targeting BCSCs through the degradation of c-Myc. CONCLUSION: In summary, 13-Oxo-ODE induced CSC death possibly through reduced c-Myc expression, making it a promising natural inhibitor of BCSCs.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
20.
Anticancer Res ; 43(3): 1091-1101, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854506

RESUMO

BACKGROUND/AIM: Breast cancer stem cells (BCSCs) are involved in carcinogenesis of the breast and contribute to therapeutic resistance. In the present study, we found that isophysalin A acts as a potent cancer stem cell inhibitor and investigated the anti-CSC mechanism of action of isophysalin A on breast cancer. MATERIALS AND METHODS: The effect of isophysalin A on BCSCs was examined using a mammosphere formation, a colony formation and a cell migration assay, as well as CD44 (Cluster of differentiation 44)high/CD24 (Cluster of differentiation 24)low analysis, an apoptosis assay, quantitative real-time PCR, western blotting, an electrophoretic mobility shift assay, and a cytokine profiling assay. RESULTS: Isophysalin A inhibited cell proliferation, colony formation, cell migration, CSC formation, and mammosphere proliferation and increased BCSC apoptosis. The subpopulation of CD44high/CD24low was decreased by isophysalin A, which also reduced the DNA binding of Stat3 and the total and nuclear protein expression levels of Stat3 and phosphorylated Stat3. Furthermore, the mRNA and media IL-6/IL-8 levels of the mammosphere were also reduced by isophysalin A. CONCLUSION: Isophysalin A inhibited the Stat3 and IL-6 signaling pathways and induced CSC death; thus, isophysalin A may be a potential natural inhibitor of BCSCs.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Apoptose , Bioensaio , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Interleucina-6/genética , Transdução de Sinais , Fator de Transcrição STAT3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA