Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 346: 113835, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34390705

RESUMO

It has been reported that Neonatal hypoxic-ischemic encephalopathy (HIE) could induce apoptosis in neonates and result in cognitive and sensory impairments, which are associated with poor developmental outcomes. Despite the improvement in neonatology, there is still no clinically effective treatment for HIE presently. Long non-coding RNAs (lncRNAs) play important roles in cellular homeostasis. Nevertheless, their effects in developing rat brains with HI is little known. Here, we established HIE model in neonate rats and explored the expression and function of lncRNAs in HI, and found the expression of 19 lncRNAs was remarkably changed in the brains of HI rats, compared to the sham group. Among them, three lncRNAs (TCONS_00041002, TCONS_00070547, TCONS_00045572) were enriched in the apoptotic process via gene ontology (GO) and pathway analysis, which were selected for the further qRT-PCR verification. Through lentivirus-mediated overexpression of these three lncRNAs, we found that overexpression of TCONS_00041002 attenuated the cell apoptosis, and increased the vitality of neurons after oxygen-glucose deprivation (OGD), therefore reduced the brain infarction and further promoted the neuron survival as well as improved the neurological disorders in the rats subjected to HIE. What's more, ceRNA network prediction and co-expression verification showed that the expression of TCONS_00041002 was positively associated with Foxe1, Pawr and Nfkbiz. Altogether, this study has exhibited that lncRNA TCONS_00041002 participates in the cell apoptosis and neuronal survival of HIE and represents a potential new target for the treatment of HIE.


Assuntos
Apoptose/fisiologia , Encéfalo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/biossíntese , Animais , Animais Recém-Nascidos , Sobrevivência Celular/fisiologia , Hipóxia-Isquemia Encefálica/genética , Aprendizagem em Labirinto/fisiologia , Células PC12 , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA/métodos
2.
Ibrain ; 7(1): 12-20, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37786876

RESUMO

Background: Cerebral stroke is the second leading cause of death with high mortality and morbidity worldwide, currently it lacks effective therapies to improve the prognosis. This study was aimed to explore the role of bone marrow mesenchymal stem cells (BMSCs) transplantation in the recovery of brain structure and function after ischemic cerebral infarction by magnetic resonance imaging (MRI). Methods: By applying internal carotid artery embolization, the ischemic cerebral infarction model in rats was established. MRI was performed to detect the imaging changes in the brain tissue after modeling, and the successful modeling was evidenced by the presence of obvious high-signal infarct areas in the brain. BMSCs were then injected into the lateral ventricles of rats, and the recovery of brain tissue and function were quantitatively evaluated by T2-weighted image (T2WI) and voxel-based morphology (VBM) after 28 days. Results: The results showed that BMSCs were cell subsets with multiple differentiation potentials. Deficits caused by Ischemic cerebral infarction were relieved by BMSCs transplantation, including increase in damaged cerebral tissue and recovery of cerebral function. In addition, the combined imaging technology of VBM and T2WI quantitatively revealed the effectiveness of BMSCs in repairing damaged brain tissue structure and function. Conclusion: Taken together, the results revealed that the transplantation of BMSCs into the lateral ventricle was beneficial to repair the structure and function of the damaged brain tissue after ischemic cerebral infarction. Moreover, the combination of VBM and T2WI technology can detect the level of brain injury in ischemic cerebral infarction dynamically and noninvasively, and evaluate the recovery of structure and function of damaged brain tissue.

3.
Brain Res Bull ; 162: 218-230, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579902

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) is major cause of neonatal death or long-term neurodevelopmental disabilities, which becomes a major practical problem currently in clinic. Whereas, its pathophysiology and underlying molecular mechanism is not clear. MicroRNAs are involved in the normal growth and development of neuronal cells. Herein, the objective of this research was to examine the roles of miR-410-3p in neurological deficits, neuronal injury and neuron apoptosis after hypoxic-ischemic and to explore its associated mechanisms. We established the hypoxic-ischemic brain damage (HIBD) model and oxygen glucose deprivation (OGD) model. Zea-longa score and TTC staining were used to detect the acute cerebral dysfunction after HIBD. QPCR verification exhibited notable downregulation of miR-410-3p expression at 24 h in rats after HIBD as well as that in PC12, SY5Y cells and primary cortical neurons post OGD. To further determine the function of miR-410-3p, lentivirus-mediated overexpression virus was applied in vivo and in vitro. Behavioral tests, including Morris water maze, open field test, Y maze test, neurological severity score and rotating rod test, were performed to evaluate long-term behavioral changes of rats at 1 month post HIBD. The results showed that the number of cells together with the axonal length were reduced post OGD. While the increase of cells number and the axonal length was measured after upregulating miR-410-3p. Meanwhile, miR-410-3p overexpression inhibited neuron apoptosis and enhanced neuronal survival. In addition, long-term motor and cognitive functions were remarkably recovered in HIBD rats with miR-410-3p overexpression. Together, miR-410-3p exerts a critical role in protecting neuronal growth as well as promoting motor and cognitive function recovery in neonatal rats subjected to HIBD. The current study therefore provides critical insights to develop the activator of miR-410-3p for the clinical treatment of HIBD in future clinic trial.


Assuntos
Córtex Cerebral/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , MicroRNAs/biossíntese , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebral/patologia , Feminino , Expressão Gênica , Humanos , Hipóxia Encefálica , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/patologia , Aprendizagem em Labirinto/fisiologia , MicroRNAs/genética , Neurônios/patologia , Células PC12 , Gravidez , Ratos , Ratos Sprague-Dawley
4.
Mol Med Rep ; 21(6): 2357-2366, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236637

RESUMO

CD44 antigen (CD44) is a transmembrane protein found in cell adhesion molecules and is involved in the regulation of various physiological processes in cells. It was hypothesized that CD44 directly affected the chondrogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs). In the present study, the expression of chondrocyte­associated factors was detected in the absence and presence of the antibody blocker anti­CD44 antibody during the chondrogenic differentiation of hAMSCs. Following inhibition of CD44 expression, the transcriptional levels of chondrocyte­associated genes SRY­box transcription factor 9, aggrecan and collagen type II α 1 chain, as well as the production of chondrocyte markers type II collagen and aggrecan were significantly decreased in hAMSCs. Further investigation indicated that there was no significant change in total ERK1/2 expression following inhibition of CD44 expression; however, phosphorylated (p)­ERK1/2 expression was decreased. The expression of p­Smad2/3 was also upregulated following CD44 inhibition. These data indicated that CD44 may affect the differentiation of hAMSCs into chondrocytes by regulating the Smad2/3 and ERK1/2 signaling pathway.


Assuntos
Âmnio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Condrócitos/metabolismo , Receptores de Hialuronatos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Agrecanas/metabolismo , Condrogênese/efeitos dos fármacos , Colágeno Tipo II/metabolismo , Humanos , Receptores de Hialuronatos/genética , Sistema de Sinalização das MAP Quinases , Fosforilação , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-32211385

RESUMO

Osteoarthritis (OA) is one of the most common refractory degenerative articular cartilage diseases. Human amniotic mesenchymal cells (hAMSCs) have emerged as a promising stem cell source for cartilage repair, and hyaluronic acid (HA) has proven to be a versatile regulator for stem cell transplantation. Herein, an effective and straightforward intra-articular injection therapy using a cocktail of hAMSCs and HA was developed to treat knee OA in a rat model. The injured cartilage was remarkably regenerated, yielding results comparable to normal cartilage levels after 56 days of treatment. Both hAMSCs and HA were indispensable organic components in this therapy, in which HA could synergistically enhance the effects of hAMSCs on cartilage repair. The regenerative mechanism was attributed to the fact that the addition of HA comprehensively enhances the activities of hAMSCs, including chondrogenic differentiation, proliferation, colonization, and regenerative modulation. This cocktail paves a new avenue for injection therapy to treat OA, holding the potential to realize rapid clinical translation.

6.
Biomed Pharmacother ; 123: 109807, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31896066

RESUMO

Osteogenic inducers play central roles in effective stem cell-based treatment of bone defects/losses. However, the current routine osteogenic inducer is a cocktail comprising three components that must be improved due to low induction efficiency and side effects. Therefore, there is an urgent need to develop safer and more effective osteoinducers. Herein, we demonstrated the osteogenic effect of Ganoderal A (GD-A), a tetracyclic triterpenoid compound from Ganoderma lucidum. GD-A showed no cytotoxicity toward human amniotic mesenchymal stem cells (hAMSCs) at doses of 0.001-10 µM; furthermore, 0.01 µM GD-A significantly induced the generation of osteoblast-specific markers, such as alkaline phosphatase, and calcium deposition in hAMSCs. At molecular levels, GD-A promoted the expression of multiple osteoblast differentiation markers, such as RUNX2, OSX, OPN, ALP, OCN, and COL1α1. Both Wnt/ß-catenin and BMP/SMAD signaling were shown as active during hAMSC osteodifferentiation. Furthermore, specific blocking of both signals by KYA1797K and SB431542 significantly inhibited alkaline phosphatase secretion and RUNX2 and ALP expression when used alone or in combination. Meanwhile, both signals were also blocked. These findings suggest that GD-A induces hAMSC differentiation into osteoblasts through signaling cross-talk between Wnt/ß-catenin and BMP/SMAD. Taken together, GD-A is a safe, effective, and novel osteoinducer and might be used for stem cell-based therapy for bone defects/losses.


Assuntos
Âmnio/citologia , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Proteínas Smad/metabolismo , Triterpenos/farmacologia , Via de Sinalização Wnt , Diferenciação Celular/genética , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Osteogênese/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triterpenos/química , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
7.
Acta Pharmacol Sin ; 41(2): 154-162, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31554962

RESUMO

ß-amyloid (Aß) is one of the inducing factors of astrocytes activation and neuroinflammation, and it is also a crucial factor for the development of Alzheimer's disease (AD). Icariside II (ICS II) is an active component isolated from a traditional Chinese herb Epimedium, which has shown to attnuate lipopolysaccharide (LPS)-induced neuroinflammation through regulation of NF-κB signaling pathway. In this study we investigated the effects of ICS II on LPS-induced astrocytes activation and Aß accumulation. Primary rat astrocytes were pretreated with ICS II (5, 10, and 20 µM) or dexamethasone (DXMS, 1 µM) for 1 h, thereafter, treated with LPS for another 24 h. We found that ICS II pretreatment dose dependently mitigated the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) in the astrocytes. Moreover, ICS II not only exerted the inhibitory effect on LPS-induced IκB-α degradation and NF-κB activation, but also decreased the levels of Aß1-40, Aß1-42, amyloid precursor protein (APP) and beta secretase 1 (BACE1) in the astrocytes. Interestingly, molecular docking revealed that ICS II might directly bind to BACE1. It is concluded that ICS II has potential value as a new therapeutic agent to treat neuroinflammation-related diseases, such as AD.


Assuntos
Astrócitos/efeitos dos fármacos , Flavonoides/farmacologia , Inflamação/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/metabolismo , Relação Dose-Resposta a Droga , Flavonoides/administração & dosagem , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
8.
Exp Cell Res ; 384(2): 111642, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31562862

RESUMO

Our hypothesis is that hyaluronic acid may regulate the differentiation of human amniotic epithelial cells (hAECs) into insulin-producing cells and help the treatment of type 1 diabetes. Herein, a protocol for the stepwise in vitro differentiation of hAECs into functional insulin-producing cells was developed by mimicking the process of pancreas development. Treatment of hAECs with hyaluronic acid enhanced their differentiation of definitive endoderm and pancreatic progenitors. Endodermal markers Sox17 and Foxa2 and pancreatic progenitor markers Pax6, Nkx6.1, and Ngn3 were upregulated an enhanced gene expression in hAECs, but hAECs did not express the ß cell-specific transcription factor Pdx1. Interestingly, hyaluronic acid promoted the expression of major pancreatic development-related genes and proteins after combining with commonly used inducers of stem cells differentiation into insulin-producing cells. This indicated the potent synergistic effects of the combination on hAECs differentiation in vitro. By establishing a multiple injection transplantation strategy via tail vein injections, hAECs transplantation significantly reduced hyperglycemia symptoms, increased the plasma insulin content, and partially repaired the islet structure in type 1 diabetic mice. In particular, the combination of hAECs with hyaluronic acid exhibited a remarkable therapeutic effect compared to both the insulin group and the hAECs alone group. The hAECs' paracrine action and hyaluronic acid co-regulated the local immune response, improved the inflammatory microenvironment in the damaged pancreas of type 1 diabetic mice, and promoted the trans-differentiation of pancreatic α cells into ß cells. These findings suggest that hyaluronic acid is an efficient co-inducer of the differentiation of hAECs into functional insulin-producing cells, and hAECs treatment with hyaluronic acid may be a promising cell-replacement therapeutic approach for the treatment of type 1 diabetes.


Assuntos
Âmnio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/terapia , Células Epiteliais/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Ativinas/metabolismo , Âmnio/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Modelos Animais de Doenças , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Endoderma/efeitos dos fármacos , Endoderma/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo
9.
Life Sci ; 232: 116669, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31326566

RESUMO

AIMS: This study investigated the effects of hyaluronic acid (HA), a commonly used osteogenic medium referred to as DAG, and the combined administration of HA and DAG (CG) on the osteogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs), and the underlying mechanism. MAIN METHODS: The phenotype of hAMSCs was detected by flow cytometry and immunocytochemical staining. Alkaline phosphatase (ALP) and calcium deposition assays were employed for evaluating the osteogenic differentiation of hAMSCs. The expression of osteogenesis-related genes and proteins was determined by quantitative reverse transcription PCR (qRT-PCR) and Western blotting, respectively. Meanwhile, the molecular mechanism of osteogenic differentiation of hAMSCs was detected by PCR array and qRT-PCR. KEY FINDINGS: The results showed that treatment with CG could significantly stimulate hAMSC ALP activity and calcium deposition compared to treatment with DAG, while HA had little effect. The expression of osteogenesis-related molecules and stemness-related molecules was up-regulated at the mRNA and protein levels in all three groups, and this up-regulation was most significant in the CG group. In addition, treatment with CG significantly increased the gene expressions involved in regulation of the TGF-ß/Smad signalling pathway compared to treatment with DAG. Furthermore, the pro-osteogenic differentiation effects as well as the up-regulated expression of genes observed in the CG treatment group were significantly inhibited when the cells were pre-treated with SB431542, an inhibitor of the TGF-ß/Smad pathway. SIGNIFICANCE: These results suggest that HA in combination with DAG could significantly enhance the osteogenic differentiation of hAMSCs, potentially via the TGF-ß/Smad signalling pathway.


Assuntos
Âmnio/citologia , Diferenciação Celular/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Humanos , Ácido Hialurônico/química , Células-Tronco Mesenquimais/citologia , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA