Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
World J Surg Oncol ; 22(1): 107, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644507

RESUMO

BACKGROUND: Colorectal signet-ring cell carcinoma (SRCC) is a rare cancer with a bleak prognosis. The relationship between its clinicopathological features and survival remains incompletely elucidated. Tumor deposits (TD) have been utilized to guide the N staging in the 8th edition of American Joint Committee on Cancer (AJCC) staging manual, but their prognostic significance remains to be established in colorectal SRCC. PATIENTS AND METHODS: The subjects of this study were patients with stage III/IV colorectal SRCC who underwent surgical treatment. The research comprised two cohorts: a training cohort and a validation cohort. The training cohort consisted of 631 qualified patients from the SEER database, while the validation cohort included 135 eligible patients from four independent hospitals in China. The study assessed the impact of TD on Cancer-Specific Survival (CSS) and Overall Survival (OS) using Kaplan-Meier survival curves and Cox regression models. Additionally, a prognostic nomogram model was constructed for further evaluation. RESULTS: In both cohorts, TD-positive patients were typically in the stage IV and exhibited the presence of perineural invasion (PNI) (P < 0.05). Compared to the TD-negative group, the TD-positive group showed significantly poorer CSS (the training cohort: HR, 1.87; 95% CI, 1.52-2.31; the validation cohort: HR, 2.43; 95% CI, 1.55-3.81; all P values < 0.001). This association was significant in stage III but not in stage IV. In the multivariate model, after adjusting for covariates, TD maintained an independent prognostic value (P < 0.05). A nomogram model including TD, N stage, T stage, TNM stage, CEA, and chemotherapy was constructed. Through internal and external validation, the model demonstrated good calibration and accuracy. Further survival curve analysis based on individual scores from the model showed good discrimination. CONCLUSION: TD positivity is an independent factor of poor prognosis in colorectal SRCC patients, and it is more effective to predict the prognosis of colorectal SRCC by building a model with TD and other clinically related variables.


Assuntos
Carcinoma de Células em Anel de Sinete , Neoplasias Colorretais , Estadiamento de Neoplasias , Nomogramas , Programa de SEER , Humanos , Carcinoma de Células em Anel de Sinete/patologia , Carcinoma de Células em Anel de Sinete/cirurgia , Carcinoma de Células em Anel de Sinete/mortalidade , Feminino , Masculino , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/cirurgia , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Seguimentos , Idoso , Estudos Retrospectivos , China/epidemiologia , Invasividade Neoplásica , Adulto
2.
J Control Release ; 357: 249-263, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011837

RESUMO

Mesenchymal stem cell (MSC) transplantation is emerging as a promising approach in the treatment of idiopathic pulmonary fibrosis (IPF), while it is still impeded by several challenges, including unsatisfactory treatment outcomes due to the poor survival of transplanted MSCs, and the lack of non-invasive and long-term imaging modality for tracking the behavior of MSCs. Herein, copper-based nanozyme (CuxO NPs) and gold nanoparticles (Au NPs) were encapsulated in oxidation-sensitive dextran (Oxi-Dex), a dextran derivative with reactive oxygen species (ROS)-responsiveness, forming a kind of novel nanocomposites (assigned as RSNPs) to act as ROS scavengers and computer tomography (CT) imaging tracers. After being internalized by MSCs, RSNPs enabled continuous CT imaging tracking of the transplanted MSCs for 21 days in IPF treatment, obtaining the location and distribution of the transplanted MSCs. Once MSCs were attacked by oxidative stress, the intracellular RSNPs could activate ROS clearance on demand by releasing CuxO NPs, thereby enhancing the therapeutic efficacy against IPF by improving cell survival. Taken together, a novel multifunctional RSNP was fabricated to label MSCs for CT imaging tracking and clearing superfluous ROS, presenting a promising high-efficient IPF therapy.


Assuntos
Fibrose Pulmonar Idiopática , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nanopartículas Metálicas , Nanocompostos , Humanos , Antioxidantes , Espécies Reativas de Oxigênio , Ouro , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/terapia , Tomografia , Tomografia Computadorizada por Raios X , Transplante de Células-Tronco Mesenquimais/métodos
3.
Biomaterials ; 288: 121731, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970616

RESUMO

Idiopathic pulmonary fibrosis (IPF) therapy has always been a big and long-standing challenge in clinical practice due to the lack of miraculous medicine. Mesenchymal stem cells (MSCs)-based therapy has recently emerged as a promising candidate for redefining IPF therapy. Enhancing the therapeutic efficacy of MSCs and understanding of their growth, migration and differentiation in harsh lung microenviroments are two keys to improving the stem cell-based IPF treatment. Herein, a non-viral dual-functional nanocarrier is fabricated by a one-pot approach, using protamine sulfate stabilized Au nanoparticles (AuPS), to genetically engineer MSCs for simultaneous IPF treatment and monitoring the biological behavior of the MSCs. AuPS exhibits superior cellular uptake ability, which results in efficient genetic engineering of MSCs to overexpress hepatocyte growth factor for enhanced IPF therapy. In parallel, the intracellular accumulation of AuPS improves the CT imaging contrast of MSCs, allowing visual tracking of the therapeutic engineered MSCs up to 48 days. Overall, this work has described for the first time a novel strategy for enhanced therapeutic efficacy and long-term CT imaging tracking of transplanted MSCs in IPF therapy, providing great prospect for stem cell therapy of lung disease.


Assuntos
Fibrose Pulmonar Idiopática , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nanopartículas Metálicas , Ouro/metabolismo , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Tomografia Computadorizada por Raios X
4.
J Biomed Nanotechnol ; 18(4): 1044-1051, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35854460

RESUMO

Mesenchymal stem cells (MSCs) have demonstrated great potential for tissue engineering and regenerative medicine applications. Noninvasive and real-term tracking of transplanted MSCs in vivo is crucial for studying the distribution and migration of MSCs, and their role in tissue injury repair. This study reports on the use of ferrimagnetic vortex iron oxide (FVIO) nanorings modified with anti-human integrin ß1 for specific recognition and magnetic resonance imaging (MRI) tracking of human MSCs (hMSCs). Integrin ß1 is highly expressed at all stem cell proliferation and differentiation stages. Therefore, the anti-integrin ß1 antibody (Ab) introduced in FVIO targets integrin ß1, thus enabling FVIO to target stem cells at any stage. This is unlike the traditional MRI-based monitoring of transplanted stem cells, which usually requires pre-labeling the stem cells with tracers before injection. Because of the ability to recognize hMSCs, the Ab-modified FVIO nanotracers (FVIO-Ab) have the advantage of not requiring pre-labeling before stem cell transplantation. Furthermore, the FVIO-Ab nanotracers have high T*2 contrast resulting from the unique magnetic properties of FVIO which can improve the MRI tracking efficiency of stem cells. This work may provide a new way for stem cell labeling and in vivo MRI tracking, thus reducing the risks associated with stem cell transplantation and promoting clinical translation.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Rastreamento de Células/métodos , Compostos Férricos , Humanos , Integrina beta1 , Imageamento por Ressonância Magnética/métodos
5.
Nanoscale ; 14(13): 5227-5238, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35315848

RESUMO

Mesenchymal stem cells (MSCs) have showed promising effects in the treatment of liver fibrosis. Long-term and noninvasive in vivo tracking of transplanted MSCs is essential for understanding the therapeutic mechanism of MSCs during the therapy of liver fibrosis. In this study, we report the development of a ferrimagnetic vortex iron oxide nanoring (FVIO)-based nanotracer for the long-term visualization of transplanted human MSCs (hMSCs) by magnetic resonance imaging (MRI). The FVIOs were prepared by a hydrothermal reaction followed by hydrogen reduction. To endow the FVIOs with biocompatibility, polyethylene glycol amine (mPEG-NH2) was covalently coupled on the surface of FVIOs, forming FVIO@PEG nanotracers with high contrast enhancement and intracellular uptake. The hMSCs labeled with FVIO@PEG nanotracers exhibited enhanced MRI contrast than those labeled with a commercial contrast agent, and could be continuously monitored by MRI in liver fibrosis mice for 28 days after transplantation, clearly clarifying the migration behavior of hMSCs in vivo. Moreover, we explored the therapeutic mechanism of the FVIO@PEG labeled hMSCs in the amelioration of liver fibrosis, including the reduction in inflammation and oxidative stress, the inhibition of hepatic fibrosis-caused histopathological damage, as well as the down-regulation of the expression of relevant cytokines. The results obtained in this work may deepen our understanding of the behavior and role of hMSCs in the treatment of liver fibrosis, which is key to the clinical application of stem cells in the therapy of liver diseases.


Assuntos
Células-Tronco Mesenquimais , Animais , Compostos Férricos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/terapia , Imageamento por Ressonância Magnética/métodos , Camundongos
6.
Nanomedicine ; 41: 102517, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032629

RESUMO

Mesenchymal stem cells (MSCs) are promising in idiopathic pulmonary fibrosis (IPF) therapy. However, low survival rate and ambiguous behavior of MSCs after transplantation impede their clinical translation. To this end, we have developed a new strategy to improve the survival rate and monitor the behavior of the transplanted MSCs simultaneously. In our strategy, nintedanib, a tyrosine kinase inhibitor, is employed to protect the human MSCs (hMSCs) from excessive oxidative stress responses and inflammatory environment in the damaged lung. Moreover, by labeling of the transplanted hMSCs with a computed tomography (CT) nanotracer, Au nanoparticles functionalized with polyethylenimine (PEI) and polyethylene glycol (PEG) (Au@PEI@PEG), in combination with red-emitting firefly luciferase (RfLuc), in vivo CT/bioluminescence (BL) dual-modal imaging tracking of the location, distribution, and survival of the transplanted hMSCs in presence of nintedanib were achieved, which facilitates the profound understanding of the role the stem cells play in IPF therapy.


Assuntos
Fibrose Pulmonar Idiopática , Células-Tronco Mesenquimais , Nanopartículas Metálicas , Ouro , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Indóis , Luciferases de Vaga-Lume , Nanopartículas Metálicas/uso terapêutico , Polietilenoglicóis , Polietilenoimina , Tomografia Computadorizada por Raios X
7.
Biomater Sci ; 10(2): 368-375, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34897301

RESUMO

The identification of paracrine factors secreted by transplanted mesenchymal stem cells (MSCs) during the treatment of idiopathic pulmonary fibrosis (IPF) is essential for understanding the role of MSCs in therapy. Herein, we report a facile and efficient strategy for in vivo tracking the secretion of hepatocyte growth factor (HGF) in MSCs during IPF therapy. In our strategy, a novel nanoflare tracer consisting of gold nanoparticles (AuNPs), complementary sequences and dye-labeled recognition sequences is developed. Briefly, the AuNPs are functionalized with oligonucleotide complementary sequences hybridized to the organic dye-labeled recognition sequences, where the organic fluorophores are in close proximity to the AuNPs. In the absence of targets, the dye and AuNPs are separated from each other, inducing the quenching of the fluorescence signal. However, in the presence of targets, the recognition sequences gradually fall off from the AuNPs, causing the fluorescence signal to rise. In brief, in vivo monitoring of the dynamic expression of HGF mRNA in transplanted MSCs during IPF therapy in the current work may provide new insight into the paracrine process of the transplanted MSCs, thereby advancing the MSC-based IPF therapy toward clinical applications.


Assuntos
Células-Tronco Mesenquimais , Nanopartículas Metálicas , Fibrose Pulmonar , DNA , Ouro , Fator de Crescimento de Hepatócito/genética , Humanos
8.
J Mater Chem B ; 9(48): 10003-10014, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34874044

RESUMO

Injectable hydrogels have aroused ever-increasing interest for their cell/biomaterial delivery ability through minimally invasive procedures. Nevertheless, it is still a challenge to simply fabricate natural biopolymer-based injectable hydrogels possessing satisfactory mechanical properties, bioadhesion, and cell delivery ability. Herein, we describe a facile dual crosslinking (DC) strategy for preparing extracellular matrix (ECM) mimetic hydrogels with desirable comprehensive performance. The chondroitin sulfate (CS)- and gelatin (Gel)-based single crosslinked (SC) hydrogels were first developed via reversible borate ester bonds, and further strengthened through the Michael-addition crosslinking reaction or visible-light initiated photopolymerization with thiol-containing polyethylene glycol (PEG) crosslinkers. The dynamic SC hydrogels showed good injectability, pH-sensitive gel-sol transformation, and self-adhesion ability to various biological tissues such as skin, liver, and intervertebral disc. The mechanically tough DC hydrogels displayed tunable stiffness, and resilience to compression load (up to 90% strain) owing to the effective energy dissipation mechanism. The formed DC hydrogels after subcutaneous injection well integrated with surrounding tissues and exhibited fast self-recovery properties. Moreover, the photoencapsulation of human mesenchymal stem cells (hMSCs) within the developed DC hydrogels was achieved and has been proved to be biocompatible, highlighting the great potential of the photopolymerized DC hydrogels in cell delivery and three-dimensional (3D) cell culture. This biomimetic, mechanically resilient, adhesive, and cytocompatible injectable DC hydrogel could serve as a promising candidate for tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Matriz Extracelular/química , Hidrogéis/química , Engenharia Tecidual , Materiais Biocompatíveis/síntese química , Células Cultivadas , Reagentes de Ligações Cruzadas/síntese química , Humanos , Hidrogéis/síntese química , Teste de Materiais , Polietilenoglicóis/química , Estresse Mecânico , Compostos de Sulfidrila/química , Aderências Teciduais
9.
Small ; 17(33): e2101861, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34235846

RESUMO

Gold nanoparticles (AuNPs) pose a great challenge in the development of nanotracers that can self-adaptively alter their properties in response to certain cellular environments for long-term stem cell tracking. Herein, pH-sensitive Au nanotracers (CPP-PSD@Au) are fabricated by sequential coupling of AuNPs with sulfonamide-based polymer (PSD) and cell-penetrating peptide (CPP), which can be efficiently internalized by mesenchymal stem cells (MSCs) and undergo pH-induced self-assembly in endosomes, facilitating long-term computed tomography (CT) imaging tracking MSCs in a murine model of idiopathic pulmonary fibrosis (IPF). Using the CPP-PSD@Au, the transplanted MSCs for the first time can be monitored with CT imaging for up to 35 days after transplantation into the lung of IPF mice, clearly elucidating the migration process of MSCs in vivo. Moreover, we preliminarily explored the mechanism of the CPP-PSD@Au labeled MSCs in the alleviation of IPF, including recovery of alveolar integrity, decrease of collagen deposition, as well as down-regulation of relevant cytokine level. This work facilitates our understanding of the behavior and effect of MSCs in the therapy of IPF, thereby providing an important insight into the stem cell-based treatment of lung diseases.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nanopartículas Metálicas , Fibrose Pulmonar , Animais , Ouro , Concentração de Íons de Hidrogênio , Camundongos , Tomografia Computadorizada por Raios X
10.
J Mater Chem B ; 9(12): 2854-2865, 2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33711088

RESUMO

Gold nanoparticles (AuNPs) have been extensively employed for computed tomography (CT) imaging in cell labeling and tracking because of their strong X-ray attenuation coefficient and excellent biocompatibility. However, the design and synthesis of stimuli-responsive AuNPs to modulate their endocytosis and exocytosis for optimal cell labeling and tracking are promising but challenging. Herein, we report an innovative labeling strategy based on temperature-responsive AuNPs (TRAuNPs) with high cell labeling efficiency and extended intracellular retention duration. We have manifested that the TRAuNP labeling imposes a negligible adverse effect on the function of human mesenchymal stem cells (hMSCs). Further experiment with idiopathic pulmonary fibrosis (IPF) model mice has demonstrated the feasibility of TRAuNP labeling for long time CT imaging tracking of transplanted hMSCs. What's more, the survival of transplanted hMSCs could also be monitored simultaneously using bioluminescence imaging after the expression of luciferase reporter genes. Therefore, we believe that this dual-modal labeling and tracking strategy enables visualization of the transplanted hMSCs in vivo, which may provide an important insight into the role of stem cells in the IPF therapy.


Assuntos
Materiais Biocompatíveis/química , Ouro/química , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Células-Tronco Mesenquimais/química , Nanopartículas Metálicas/química , Temperatura , Tomografia Computadorizada por Raios X , Animais , Materiais Biocompatíveis/metabolismo , Modelos Animais de Doenças , Ouro/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula
11.
Bioorg Chem ; 103: 104109, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32768741

RESUMO

Histone deacetylases (HDACs) have been indicated important roles in neurodegenerative disorders including Alzheimer's disease (AD). Herein, a series of novel compounds that contain a memantine moiety were designed to target HDACs and N-methyl-d-aspartate receptor (NMDAR) which are related to the treatment of AD. Biological characterization established that compound 9d exhibited a balanced inhibitory activity on NMDAR and HDACs. This compound is relatively selective to HDAC6 with IC50 of 0.18 µM and also maintains comparable activity on NMDAR (Ki = 0.59 µM) as memantine. Functionally, treatment with 9d increased the level of AcTubulin in MV4-11 cells and rescued PC-12 cells from H2O2-induced cytotoxicity with EC50 of 0.94 µM. Studies in mice also demonstrated that compound 9d efficiently penetrates the blood brain barrier to reach the brain tissue. Collectively, the results strongly encourage further development of 9d as a potential therapeutic agent for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Células PC12 , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
12.
Bioconjug Chem ; 31(7): 1756-1765, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32463680

RESUMO

Gold nanoparticles (AuNPs) have been widely documented as tumor radiosensitizers via enhanced energy deposition of ionizing radiation. However, the sensitization efficiency of AuNPs is still far from satisfactory owing to the irradiation on nontarget tissues and the tumor radio-resistance. To address these issues, we report herein the rational design and development of hyaluronic acid-modified Au-Ag alloy nanoparticles (Au-Ag@HA NPs) with effective tumor radiosensitization by receptor mediated tumor targeting as well as microenvironment-activated hydroxyl radicals (•OH) generation. In our work, Au-Ag@HA NPs were synthesized by the coreduction of HAuCl4 and AgNO3 in the presence of trisodium citrate, followed by surface modification of HA to the Au-Ag alloy NPs. HA modification affords the alloy NPs with specific targeting to 4T1 breast cancer cells overexpressing CD44 receptor, while the introduction of Ag atom imparts the alloy NPs with superior multienzyme-like activities to the monometallic AuNPs for efficient tumor catalytic therapy. More importantly, the ionizing radiation and peroxidase-like activity of Au-Ag@HA NPs boost the production of •OH and the release of toxic Ag+ in the tumor sites, thereby leading to effective tumor therapeutic outcome. This work provides a promising treatment paradigm for radiation/nanozyme/Ag+ combined therapy against cancer and will advance the design and development of multifunctional nanoplatforms for synergetically enhanced tumor therapy.


Assuntos
Ouro/química , Ácido Hialurônico/química , Nanopartículas Metálicas/química , Neoplasias/terapia , Prata/química , Linhagem Celular Tumoral , Quimiorradioterapia , Humanos , Estresse Oxidativo , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Microambiente Tumoral
13.
Biomater Sci ; 8(11): 3095-3105, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347847

RESUMO

Human mesenchymal stem cells (hMSCs) are promising in the treatment of pulmonary fibrosis (PF). However, the behavior of hMSCs after transplantation, including dynamic translocation, location and survival, impeding the clinical application of hMSCs in PF is still ambiguous. Herein, we report an effective dual-labeling strategy combining endogenous bioluminescence imaging (BLI) and exogenous near-infrared-persistent luminescence (NIR-PL) imaging for in situ visualization of the transplanted stem cells. The long persistent luminescence nanoparticles (LPLNPs), Zn1.1Ga1.8Ge0.1O4:Cr3+,Eu3+, were developed to track the dynamic translocation, position and distribution of the transplanted hMSCs, taking advantage of their long-lasting NIR-PL imaging ability and minimal autofluorescence background interference. Moreover, in virtue of their ability to express red-emitting firefly luciferase (RfLuc), the living stem cells after transplantation could be discriminated from the dead cells by BLI. This facile pattern contributes to the in situ monitoring of stem cells regarding their spontaneous behavior in vivo and therefore deepening our knowledge in the role played by the transplanted hMSCs in PF therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Metais Pesados/administração & dosagem , Nanopartículas/administração & dosagem , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/terapia , Adipogenia , Animais , Proliferação de Células , Células Cultivadas , Luminescência , Medições Luminescentes , Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Camundongos Nus
14.
Small ; 15(46): e1904314, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31565866

RESUMO

Human mesenchymal stem cells (hMSCs), due to their immune regulation and collateral secretion effects, are currently explored for potential therapy of idiopathic pulmonary fibrosis (IPF). Understanding the migration, homing, functions, and survival of transplanted hMSCs in vivo is critical to successful IPF treatment. Therefore, it is highly desired to develop noninvasive and effective imaging technologies to track the transplanted hMSCs, providing experimental basis for improving the efficacy of hMSCs in the treatment of IPF. The rational design and development of a dual-labeling strategy are reported by integrating gold nanoparticle (AuNP)-based computed tomography (CT) nanotracers and red-emitting firefly luciferase (RfLuc)-based bioluminescence (BL) tags for CT/BL multimodal imaging tracking of the transplanted hMSCs in a murine model of IPF. In this approach, the CT nanotracer is prepared by sequential coupling of AuNPs with polyethylene glycol and trans-activator of transcription (TAT) peptide (Au@TAT), and employed it to monitor the location and distribution of the transplanted hMSCs in vivo by CT imaging, while RfLuc is used to monitor hMSCs viability by BLI. This facile strategy allows for visualization of the transplanted hMSCs in vivo, thereby enabling profound understanding of the role of hMSCs in the IPF treatment, and advancing stem cell-based regenerative medicine.


Assuntos
Rastreamento de Células , Medições Luminescentes , Células-Tronco Mesenquimais/citologia , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Tomografia Computadorizada por Raios X , Animais , Sobrevivência Celular , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
15.
Eur J Pharm Sci ; 139: 105036, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31446078

RESUMO

Graphene oxide (GO) has attracted huge attention in biomedical field in recent years. However, limited attempts have been invested in utilizing GO on active targeted delivery for gene therapy in liver cancer treatments. Glycyrrhetinic acid (GA) has been reported to be widely used as a targeting ligand to functionalize nanomaterials to treat hepatocellular carcinoma. In this article, GA is employed as a liver targeting ligand to construct GA, polyethylene glycol (PEG), polyamidoamine dendrimer (Dendrimer) and nano-graphene oxide (NGO) conjugate (GA-PEG-NGO-Dendrimer, GPND) for siRNA delivery for the first time. As we expected, GPND exhibited excellent stability, low toxicity, negligible hemolytic activity and remarkably high transfection efficiency in vitro. We also found effective VEGFa gene silencing in both mRNA and protein level in HepG2 cells. Notably, siRNA efficiently gathered in liver tumor tissues by the delivery of GPND, and eventually the growth of tumor tissues were inhibited with enhanced targeting capability and no obvious pathological changes. Moreover, histopathological results preliminarily support the high in vivo safety of GPND/anti-VEGFa siRNA nanocomplex. Collectively, GPND/siRNA nanocomplex, with high safety, targeting and transfection as well as prolonged half-life, is a promising nanomedicine and may provide a new direction for highly-specific targeted gene therapy.


Assuntos
Carcinoma Hepatocelular/terapia , Ácido Glicirretínico/administração & dosagem , Grafite/administração & dosagem , Neoplasias Hepáticas/terapia , Polietilenoglicóis/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Ácido Glicirretínico/química , Grafite/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Nus , Polietilenoglicóis/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Mol Med Rep ; 20(2): 1321-1332, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31173225

RESUMO

Artesunate (ART) is a semi­synthetic derivative of artemisinin used in the treatment of patients with malaria, which has also been reported to have immunoregulatory, anticancer and anti­inflammatory properties. The aim of the present study was to investigate the possible beneficial effects of ART on ulcerative colitis (UC) rats and to detect the possible mechanisms underlying these effects. A UC rat model was established using dextran sulfate sodium (DSS). Rats were randomly divided into the following groups: Normal control, UC model group, UC rats treated with a low, medium or high dose of ART (10, 30 and 50 mg/kg/day, respectively), and the positive control group (50 mg/kg/day 5­aminosalicylic acid). The damage status of colonic mucosal epithelial tissue was investigated by hematoxylin and eosin staining, and then the weight, colon length and disease activity index (DAI) were measured. Western blotting and reverse transcription­quantitative polymerase chain reaction analysis were used to detect the levels of cytokines associated with UC and proteins associated with Toll­like receptor 4 (TLR4)­nuclear factor (NF)­κB pathway. ELISA was also performed to measure the levels of inflammatory cytokines. In addition, the viability and infiltration of RAW264.7 cells were examined using Cell Counting Kit­8 and Transwell assays. The results demonstrated that treatment with ART significantly alleviated the UC symptoms induced by DSS in the rat model, lowered the DAI, ameliorated pathological changes, attenuated colon shortening, inhibited the levels of pro­inflammatory mediators and myeloperoxidase activity, and increased hemoglobin expression. Additionally, inflammatory and apoptotic markers were found to be significantly downregulated following treatment with ART in UC rats and RAW264.7 cells. To the best of our knowledge, the present study is the first to demonstrate that ART exerts anti­inflammatory effects via regulating the TLR4­NF­κB signaling pathway in UC.


Assuntos
Artesunato/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , NF-kappa B/metabolismo , Substâncias Protetoras/uso terapêutico , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Artesunato/farmacologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colite Ulcerativa/sangue , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana , Hemoglobinas/metabolismo , Mediadores da Inflamação/sangue , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Peroxidase/metabolismo , Substâncias Protetoras/farmacologia , Células RAW 264.7 , Ratos Sprague-Dawley
17.
Bioorg Med Chem ; 27(8): 1595-1604, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30879863

RESUMO

Histone deacetylases inhibitors (HDACIs) represents effective treatments for cancer. In continuing our efforts to develop novel and potent HDACIs, a series of N-hydroxycinnamamide-based HDACIs with aromatic ring and various aliphatic linker have been successfully designed and synthesized. Biological evaluations established that compounds 4h, 4i, 4j, 4l, 4r showed superior inhibition on histone deacetylase and antiproliferative activity in some solid tumor cell lines [HeLa, SK-N-BE(2), PC-3] compared to the known inhibitor SAHA. Among these analogs, 4l exhibited selectivity to HDAC1.


Assuntos
Desenho de Fármacos , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/síntese química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Simulação de Acoplamento Molecular , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
18.
Int Immunol ; 31(8): 499-514, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30809639

RESUMO

Decreased levels of Faecalibacterium prausnitzii (F. prausnitzii), whose supernatant plays an anti-inflammatory effect, are frequently found in inflammatory bowel disease (IBD) patients. However, the anti-inflammatory products in F. prausnitzii supernatant and the mechanism have not been fully investigated. Here we found that F. prausnitzii and F. prausnitzii-derived butyrate were decreased in the intestines of IBD patients. Supplementation with F. prausnitzii supernatant and butyrate could ameliorate colitis in an animal model. Butyrate, but not other substances produced by F. prausnitzii, exerted an anti-inflammatory effect by inhibiting the differentiation of T helper 17 (Th17) cells. The mechanism underlying the anti-inflammatory effects of the butyrate produced by F. prausnitzii involved the enhancement of the acetylation-promoted degradation of c-Myc through histone deacetylase 3 (HDAC3) inhibition. In conclusion, F. prausnitzii produced butyrate to decrease Th17 differentiation and attenuate colitis through inhibiting HDAC3 and c-Myc-related metabolism in T cells. The use of F. prausnitzii may be an effective new approach to decrease the level of Th17 cells in the treatment of inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Butiratos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Faecalibacterium prausnitzii/metabolismo , Histona Desacetilases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células Th17/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Butiratos/química , Butiratos/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Faecalibacterium prausnitzii/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Células Th17/citologia , Células Th17/metabolismo , Ácido Trinitrobenzenossulfônico/administração & dosagem
19.
Acta Biomater ; 84: 328-338, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30500447

RESUMO

In this work, we developed a novel multifunctional nanoplatform based on hyaluronic acid modified Au nanocages (AuNCs-HA). The rational design of AuNCs-HA renders the nanoplatform three functionalities: (1) AuNCs-HA with excellent LSPR peak in the NIR region act as contrast agent for enhanced photoacoustic (PA) imaging and photothermal therapy (PTT); (2) the nanoplatform with high-energy rays (X-ray) absorption and auger electrons generation acts as a radiosensitizer for radiotherapy; (3) good photocatalytic property and large surface area make AuNCs-HA a photosensitive agent for photodynamic therapy (PDT). In vivo results demonstrated that AuNCs-HA presented excellent PA imaging performance after intravenous injection, which provided contour, size, and location information of the tumor. Moreover, because AuNCs-HA could combine radiotherapy and phototherapy together, the tumors treated with AuNCs-HA showed complete growth inhibition, comparing to that with each therapy alone. Taken together, our present study demonstrates that AuNCs-HA is of great potential as a multifunctional nanoplatform for PA imaging-guided radio- and photo-therapy of tumor. STATEMENT OF SIGNIFICANCE: In this study, a commendable theranostic nanoplatform based on hyaluronic acid modified AuNCs (AuNCs-HA) was developed. In our approach, the dilute solution of Gold(III) chloride is slowly dripped into Ag nanocubes solution, then the Au nanocages were obtained by redox reaction, and followed by HA modification. We explored them, simultaneously, as radiosensitizers for RT, photosensitizers for PDT, and therapeutic agents for PTT. Compared to that of each therapies alone, the combination of radio-therapy and photo-therapy results in a considerably improved tumor eliminating effect and efficiently inhibited tumor growth. In addition, AuNCs-HA exhibited remarkably strong PA signals for precise identification of the location, size, and boundary of the tumor, thereby facilitating imaging-guided therapy. In brief, our design of AuNCs-HA represents a general and versatile strategy for building up cancer-targeted nanotheranostics with desired synergistic imaging and therapy functionalities.


Assuntos
Ouro , Hipertermia Induzida , Neoplasias Mamárias Experimentais , Nanopartículas Metálicas , Técnicas Fotoacústicas , Fotoquimioterapia , Animais , Feminino , Ouro/química , Ouro/farmacologia , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/terapia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Nanomedicina Teranóstica
20.
Int J Mol Med ; 42(3): 1305-1316, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29901086

RESUMO

Although enteral nutrition therapy for inflammatory bowel disease has been confirmed to be an effective treatment method, the exact mechanism responsible for the effects of enteral nutrition remains unclear. The aim of the present study was to investigate the protective effect of exclusive enteral nutrition (EEN) against colitis, and to elucidate the potential mechanisms by inhibiting p65 activation via regulating the p38/mitogen­ and stress­activated protein kinase­1 (MSK1) pathway. Experiments were performed by establishing dextran sulfate sodium (DSS)­mice colitis and picrylsulfonic acid solution (TNBS)­induced rat colitis, and the results demonstrated that EEN treatment attenuated body weight loss, colon length shortening and colonic pathological damage caused by colitis. EEN also inhibited inflammatory cells infiltration and decreased myeloperoxidase and inducible nitric oxide synthase activities. Furthermore, EEN significantly reduced the production of pro­inflammatory mediators in serum and the colon. Mechanically, EEN suppressed activation of p65 by inhibiting the p38/MSK1 pathway. In conclusion, the present study demonstrated that EEN attenuated DSS­ and TNBS­induced colitis by inhibiting p65 activation via regulating the p38/MSK1 pathway, thus suggesting that EEN is effective in the treatment of colitis.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Caspase 9/metabolismo , Neoplasias do Colo/metabolismo , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Transmissão , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA