Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Environ Sci ; 37(4): 341-353, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38727157

RESUMO

Objective: Hydroquinone (HQ), one of the phenolic metabolites of benzene, is widely recognized as an important participant in benzene-induced hematotoxicity. However, there are few relevant proteomics in HQ-induced hematotoxicity and the mechanism hasn't been fully understood yet. Methods: In this study, we treated K562 cells with 40 µmol/L HQ for 72 h, examined and validated protein expression changes by Label-free proteomic analysis and Parallel reaction monitoring (PRM), and performed bioinformatics analysis to identify interaction networks. Results: One hundred and eighty-seven upregulated differentially expressed proteins (DEPs) and 279 downregulated DEPs were identified in HQ-exposed K562 cells, which were involved in neutrophil-mediated immunity, blood microparticle, and other GO terms, as well as the lysosome, metabolic, cell cycle, and cellular senescence-related pathways. Focusing on the 23 DEGs and 5 DEPs in erythroid differentiation-related pathways, we constructed the network of protein interactions and determined 6 DEPs (STAT1, STAT3, CASP3, KIT, STAT5B, and VEGFA) as main hub proteins with the most interactions, among which STATs made a central impact and may be potential biomarkers of HQ-induced hematotoxicity. Conclusion: Our work reinforced the use of proteomics and bioinformatic approaches to advance knowledge on molecular mechanisms of HQ-induced hematotoxicity at the protein level and provide a valuable basis for further clarification.


Assuntos
Benzeno , Hemolíticos , Proteoma , Proteoma/metabolismo , Proteômica , Benzeno/toxicidade , Células K562 , Humanos , Testes de Toxicidade/métodos , Hemolíticos/toxicidade
2.
Arch Toxicol ; 97(8): 2169-2181, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37329354

RESUMO

The phenolic metabolite of benzene, hydroquinone (HQ), has potential risks for hematological disorders and hematotoxicity in humans. Previous studies have revealed that reactive oxygen species, DNA methylation, and histone acetylation participate in benzene metabolites inhibiting erythroid differentiation in hemin-induced K562 cells. GATA1 and GATA2 are crucial erythroid-specific transcription factors that exhibit dynamic expression patterns during erythroid differentiation. We investigated the role of GATA factors in HQ-inhibited erythroid differentiation in K562 cells. When K562 cells were induced with 40 µM hemin for 0-120 h, the mRNA and protein levels of GATA1 and GATA2 changed dynamically. After exposure to 40 µM HQ for 72 h, K562 cells were induced with 40 µM hemin for 48 h. HQ considerably reduced the percentage of hemin-induced Hb-positive cells, decreased the GATA1 mRNA, protein, and occupancy levels at α-globin and ß-globin gene clusters, and increased the GATA2 mRNA and protein levels significantly. ChIP-seq analysis revealed that HQ reduced GATA1 occupancy, and increased GATA2 occupancy at most gene loci in hemin-induced K562 cells. And GATA1 and GATA2 might play essential roles in the erythroid differentiation protein interaction network. These results elucidate that HQ decreases GATA1 occupancy and increases GATA2 occupancy at the erythroid gene loci, thereby downregulating GATA1 and upregulating GATA2 expression, which in turn modulates the expression of erythroid genes and inhibits erythroid differentiation. This partially explains the mechanism of benzene hematotoxicity.


Assuntos
Benzeno , Hemina , Humanos , Células K562 , Benzeno/toxicidade , Hemina/farmacologia , Hidroquinonas/toxicidade , Diferenciação Celular , Fator de Transcrição GATA1/genética , RNA Mensageiro
3.
BMC Pharmacol Toxicol ; 23(1): 20, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366954

RESUMO

BACKGROUND: Hydroquinone (HQ) is a phenolic metabolite of benzene with a potential risk for hematological disorders and hematotoxicity in humans. In the present study, an integrative analysis of microRNA (miRNA) and mRNA expressions was performed to identify potential pathways and miRNA-mRNA network associated with benzene metabolite hydroquinone-induced hematotoxicity. METHODS: K562 cells were treated with 40 µM HQ for 72 h, mRNA and miRNA expression changes were examined using transcriptomic profiles and miRNA microarray, and then bioinformatics analysis was performed. RESULTS: Out of all the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) induced by HQ, 1482 DEGs and 10 DEMs were up-regulated, and 1594 DEGs and 42 DEMs were down-regulated. HQ-induced DEGs were involved in oxidative stress, apoptosis, DNA methylation, histone acetylation and cellular response to leukemia inhibitory factor GO terms, as well as metabolic, Wnt/ß-catenin, NF-κB, and leukemia-related pathways. The regulatory network of mRNAs and miRNAs includes 23 miRNAs, 1108 target genes, and 2304 potential miRNAs-mRNAs pairs. MiR-1246 and miR-224 had the potential to be major regulators in HQ-exposed K562 cells based on the miRNAs-mRNAs network. CONCLUSIONS: This study reinforces the use of in vitro model of HQ exposure and bioinformatic approaches to advance our knowledge on molecular mechanisms of benzene hematotoxicity at the RNA level.


Assuntos
Leucemia , MicroRNAs , Benzeno/toxicidade , Redes Reguladoras de Genes , Humanos , Hidroquinonas/toxicidade , Células K562 , Leucemia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
World J Hepatol ; 14(12): 1985-1996, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36618329

RESUMO

Among the most common cancers, hepatocellular carcinoma (HCC) has a high rate of tumor recurrence, tumor dormancy, and drug resistance after initial successful chemotherapy or radiotherapy. A small subset of cancer cells, cancer stem cells (CSCs), exhibit stem cell characteristics and are present in various cancers, including HCC. The dysregulation of microRNAs (miRNAs) often accompanies the occurrence and development of HCC. miRNAs can influence tumorigenesis, progression, recurrence, and drug resistance by regulating CSCs properties, which supports their clinical utility in managing and treating HCC. This review summarizes the regulatory effects of miRNAs on CSCs in HCC with a special focus on their impact on HCC recurrence.

5.
Arch Toxicol ; 93(1): 137-147, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327826

RESUMO

1,2,4-Benzenetriol (BT) is one of the phenolic metabolites of benzene, a general occupational hazard and ubiquitous environmental air pollutant with leukemogenic potential in humans. Previous studies have revealed that the benzene metabolites phenol and hydroquinone can inhibit hemin-induced erythroid differentiation in K562 cells. We investigated the roles of DNA methylation and histone acetylation in BT-inhibited erythroid differentiation in K562 cells. When K562 cells were treated with 0, 5, 10, 15 or 20 µM BT for 72 h, hemin-induced hemoglobin synthesis decreased in a concentration-dependent manner. Both 5-aza-2'-deoxycytidine (5-aza-CdR, DNA methyltransferase inhibitor) and trichostatin A (TSA, histone deacetylases inhibitor) could prevent 20 µM BT from inhibiting hemin-induced hemoglobin synthesis and the mRNA expression of erythroid genes. Exposure to BT changed DNA methylation levels at several CpG sites of erythroid-specific genes, as well as the acetylation of histone H3 and H4, chromatin occupancy of GATA-1 and recruitment of RNA polymerase II at α-globin and ß-globin gene clusters after hemin induction. These results demonstrated that BT could inhibit hemin-induced erythroid differentiation, where DNA methylation and histone acetylation also played important roles by down-regulating erythroid-specific genes. This partly explained the mechanisms of benzene hematotoxicity.


Assuntos
Benzeno/toxicidade , Diferenciação Celular/efeitos dos fármacos , Metilação de DNA , Histonas/química , Acetilação , Azacitidina/farmacologia , Fator de Transcrição GATA1 , Globinas/genética , Hemina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Hidroquinonas , Ácidos Hidroxâmicos/farmacologia , Células K562 , RNA Polimerase II
6.
Biomed Environ Sci ; 31(3): 247-251, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29673449

RESUMO

This study investigated the effects of N-acetylcysteine (NAC) and ascorbic acid (AA) on hemin-induced K562 cell erythroid differentiation and the role of reactive oxygen species (ROS) in this process. Hemin increased ROS levels in a concentration-dependent manner, whereas NAC and AA had opposite effects. Both NAC and AA eliminated transient increased ROS levels after hemin treatment, inhibited hemin-induced hemoglobin synthesis, and decreased mRNA expression levels of ß-globin, γ-globin, and GATA-1 genes significantly. Pretreatment with 5,000 µmol/L AA for 2 h resulted in a considerably lower inhibition ratio of hemoglobin synthesis than that when pretreated for 24 h, whereas the ROS levels were the lowest when treated with 5,000 µmol/L AA for 2 h. These results show that NAC and AA might inhibit hemin-induced K562 cell erythroid differentiation by downregulating ROS levels.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Eritroides/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Baixo , Hemina/farmacologia , Humanos , Células K562
7.
Exp Mol Pathol ; 102(3): 377-383, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28347704

RESUMO

BACKGROUND: Studies have shown that endothelial-to-mesenchymal transition (EndMT) could contribute to the progression of diabetic nephropathy, diabetic renal fibrosis, and cardiac fibrosis. The aim of this study was to investigate the influence of high glucose and related mechanism of MAPK inhibitor or specific antioxidant on the EndMT. METHODS: In vitro human umbilical vein endothelial cells (HUVEC) were cultured with 11mM, 30mM, 60mM and 120mM glucose for 0, 24, 48, 72 and 168h. Endothelial cell morphology was observed with microscope, and RT-PCR was used to detect mRNA expression of endothelial markers VE-cadherin and CD31, mesenchymal markers α-SMA and collagen I, and transforming growth factor TGF-ß1. Immunofluorescence staining was performed to detect the expression of CD31 and α-SMA. The concentration of TGF-ß1 in the supernatant was detected by ELISA. ERK1/2 phosphorylation level was detected by Western blot analysis. RESULTS: High glucose induced EndMT and increased the TGF-ß1 level in HUVEC cells. Cells in high glucose for 7 days showed a significant decrease in mRNA expression of CD31 and VE-cadherin, and a significant increase in that of α-SMA and collagen I, while lost CD31 staining and acquired α-SMA staining. ERK signaling pathway blocker PD98059 significantly attenuated the high glucose-induced increase in the ERK1/2 phosphorylation level. PD98059 and NAC both inhibited high glucose-induced TGF-ß1 expression and attenuated EndMT marker protein synthesis. CONCLUSION: High glucose could induce HUVEC cells to undergo EndMT. NAC and ERK signaling pathway may play important role in the regulation of the TGF-ß1 biosynthesis during high glucose-induced EndMT.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Acetilcisteína/farmacologia , Actinas/genética , Actinas/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Flavonoides/farmacologia , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
8.
Biomed Environ Sci ; 27(3): 212-4, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24709103

RESUMO

The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation was investigated. After K562 cells were treated with hydroquinone for 24 h, and hemin was later added to induce erythroid differentiation for 48 h, hydroquinone inhibited hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells in a concentration-dependent manner. The 24-h exposure to hydroquinone also caused a concentration-dependent increase at an intracellular ROS level, while the presence of N- acetyl-L-cysteine prevented hydroquinone- induced ROS production in K562 cells. The presence of N-acetyl-L-cysteine also prevented hydroquinone inhibiting hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells. These evidences indicated that ROS production played a role in hydroquinone-induced inhibition of erythroid differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Hidroquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Relação Dose-Resposta a Droga , Hemina/farmacologia , Humanos , Células K562/efeitos dos fármacos , gama-Globinas/genética
9.
Environ Toxicol ; 29(12): 1437-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23776099

RESUMO

Benzene-induced erythropoietic depression has been proposed to be due to the production of toxic metabolites. Presently, the cytotoxicities of benzene metabolites, including phenol, catechol, hydroquinone, and 1,2,4-benzenetriol, to erythroid progenitor-like K562 cells were investigated. After exposure to these metabolites, K562 cells showed significant inhibition of viability and apoptotic characteristics. Each metabolite caused a significant increase in activities of caspase-3, -8, and -9, and pretreatment with caspase-3, -8, and -9 inhibitors significantly inhibited benzene metabolites-induced phosphatidylserine exposure. These metabolites also elevated expression of Fas and FasL on the cell surface. After exposure to benzene metabolites, K562 cells showed an increase in reactive oxygen species level, and pretreatment with N-acetyl-l-cysteine significantly protected against the cytotoxicity of each metabolite. Interestingly, the control K562 cells and the phenol-exposed cells aggregated together, but the cells exposed to other metabolites were scattered. Further analysis showed that hydroquione, catechol, and 1,2,4-benzenetriol induced a decrease in the cell surface sialic acid levels and an increase in the cell surface sialidase activity, but phenol did not cause any changes in sialic acid levels and sialidase activity. Consistently, an increase in expression level of sialidase Neu3 mRNA and a decrease in mRNA level of sialyltransferase ST3GAL3 gene were detected in hydroquione-, catechol-, or 1,2,4-benzenetriol-treated cells, but no change in mRNA levels of two genes were found in phenol-treated cells. In conclusion, these benzene metabolites could induce apoptosis of K562 cells mainly through caspase-8-dependent pathway and ROS production, and sialic acid metabolism might play a role in the apoptotic process.


Assuntos
Derivados de Benzeno/toxicidade , Caspases/metabolismo , Ácidos Siálicos/metabolismo , Apoptose , Catecóis/toxicidade , Membrana Celular/metabolismo , Humanos , Hidroquinonas/toxicidade , Células K562 , Fenol/toxicidade , Espécies Reativas de Oxigênio/metabolismo
10.
Toxicol Appl Pharmacol ; 273(3): 635-43, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24141029

RESUMO

Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation.


Assuntos
Catecol O-Metiltransferase/metabolismo , Catecóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Catecol O-Metiltransferase/genética , Sobrevivência Celular , Células Eritroides/citologia , Células Eritroides/efeitos dos fármacos , Hemina/metabolismo , Hemoglobinas/metabolismo , Humanos , Células K562 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , S-Adenosil-Homocisteína/metabolismo
11.
Toxicology ; 312: 108-14, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23973255

RESUMO

Benzene is a common occupational hazard as well as a widespread pollutant. Its metabolites play important roles in its toxicity to the hematopoietic system, but little is known about how benzene metabolites affect erythropoiesis. Our previous study demonstrated that benzene metabolites, including phenol and hydroquinone, inhibited hemin-induced erythroid differentiation of K562 cells. In present study, to elucidate the role of DNA methylation in benzene metabolites-induced inhibition on erythroid differentiation, it was investigated whether DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-aza-CdR), was able to prevent benzene metabolites inhibiting hemin-induced erythroid differentiation in K562 cells, and the methylation levels of erythroid-specific genes in benzene metabolites-treated K562 cells were analyzed by Quantitative MassARRAY methylation analysis platform. It was found that treatment of K562 cells with 5-aza-CdR completely prevented phenol and hydroquinone inhibiting hemin-induced hemoglobin synthesis and hemin-induced expression of erythroid specific genes, including α- and ß-globin, erythroid porphobilinogen deaminase and GATA binding protein 1 (GATA-1). Consistently, the exposure to benzene metabolites caused an increase in DNA methylation levels at a few CpG sites in some erythroid specific genes, including α-globin gene and α-cluster HS40 element, ß-globin gene and HS core sequence in LCR of ß-globin gene cluster, erythroid porphobilinogen deaminase gene, and GATA-1 gene. These results indicated that DNA methylation played a role in benzene metabolites inhibiting hemin-induced erythroid differentiation of K562 cells via down-regulating transcription of some erythroid related genes.


Assuntos
Metilação de DNA , Células Eritroides/efeitos dos fármacos , Hidroquinonas/toxicidade , Fenol/toxicidade , Azacitidina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Ilhas de CpG , Eritropoese/efeitos dos fármacos , Fator de Transcrição GATA1/genética , Humanos , Hidroximetilbilano Sintase/genética , Células K562 , Globinas beta/genética , gama-Globinas/genética
12.
Basic Clin Pharmacol Toxicol ; 113(6): 377-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23855763

RESUMO

The purpose of this study was to investigate the possibility that oxidative stress was involved in danofloxacin-induced toxicity in renal tubular cells epithelial cell line (LLC-PK1). Confluent LLC-PK1 cells were incubated with various concentrations of danofloxacin. The extent of oxidative damage was assessed by measuring the reactive oxygen species (ROS) level, lipid peroxidation, cell apoptosis and antioxidative enzyme activities. Danofloxacin induced a concentration-dependent increase in the ROS production, not even cytotoxic conditions. Similarly, danofloxacin caused an about 4 times increase in the level of thiobarbituric acid reactive substances at the concentration of 400 µM for 24 hr, but it did not induce cytotoxicity and apoptosis. Antioxidant enzymes activities, such as superoxide dismutase (SOD) and catalase (CAT), were increased after treatment with 100, 200 and 400 µM of danofloxacin for 24 hr. The activity of glutathione peroxidase (GPX) was significantly decreased in a concentration-dependent manner. In addition, ROS production, lipid peroxidation and GPX decline were inhibited by additional glutathione and N-acetyl cysteine. These data suggested that danofloxacin could not induce oxidative stress in LLC-PK1 cells at the concentration (≤400 µM) for 24 hr. The increase levels of ROS and lipid peroxidation could be partly abated by the increase activities of SOD and CAT.


Assuntos
Anti-Infecciosos/farmacologia , Fluoroquinolonas/farmacologia , Células LLC-PK1/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Anti-Infecciosos/efeitos adversos , Antioxidantes , Catalase/efeitos dos fármacos , Catalase/metabolismo , Relação Dose-Resposta a Droga , Fluoroquinolonas/efeitos adversos , Glutationa Peroxidase/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Túbulos Renais/efeitos dos fármacos , Células LLC-PK1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Suínos
13.
Mol Cancer Ther ; 11(5): 1155-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22389469

RESUMO

The transcription factor c-Myc is important in cell fate decisions and is frequently overexpressed in cancer cells, making it an attractive therapeutic target. Natural compounds are among the current strategies aimed at targeting c-Myc, but their modes of action still need to be characterized. To explore the mechanisms underlying the anticancer activity of a natural diterpenoid, oridonin, we conducted miRNA expression profiling and statistical analyses that strongly suggested that c-Myc was a potential molecular target of oridonin. Furthermore, experimental data showed that oridonin significantly reduced c-Myc protein levels in vitro and in vivo and that this reduction was mediated by the ubiquitin-proteasome system. Fbw7, a component of the ubiquitin-proteasome system and an E3 ubiquitin ligase of c-Myc, was upregulated rapidly in K562 cells and other leukemia and lymphoma cells, resulting in the rapid turnover of c-Myc. In cell lines harboring mutations in the WD domain of Fbw7, the degradation of c-Myc induced by oridonin was attenuated during short-term treatment. GSK-3, an Fbw7 priming kinase, was also activated by oridonin, along with an increase in T58-phosphorylated c-Myc. Furthermore, the knockdown of Fbw7 or the forced expression of stable c-Myc resulted in reduced sensitization to oridonin-induced apoptosis. Our observations help to clarify the anticancer mechanisms of oridonin and shed light on the application of this natural compound as an Fbw7-c-Myc pathway targeting agent in cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Diterpenos do Tipo Caurano/farmacologia , Proteínas F-Box/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Proteína 7 com Repetições F-Box-WD , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Células HL-60 , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Fosforilação/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais/efeitos dos fármacos , Ubiquitina/metabolismo
14.
Shi Yan Sheng Wu Xue Bao ; 36(6): 414-20, 2003 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-14724931

RESUMO

In order to research the function mechanism of the 2,4-D during the development of plant somatic embryogenesis, we studied its function mechanism and relationship with the space-time distributing of Ca2+ content and ATPase activity on somatic embryogenesis of Lycium barbarum L. The possible effects on 2,4-dichlorophenoxyacetic acid (2,4-D) induced somatic embryogenesis and changes of Ca2+ and ATPase active at different development period of somatic embryogenesis. The result showed: The 2,4-D was a key hormone for induced embryonic state of Lycium barbarum L. The embryonic callus and non-embryonic callus was separately obtained in the medium that contains the auxin 2,4-D and lack 2,4-D. In the present study, we have observed the Ca2+ was more abundant in the further intercellular matrix and on the cell wall at the multi-cellular stage, and Ca2+ was concentrated in the plasma membrane and vacuoles membrane during embryonic cell differentiate and division, to the globular embryo, more Ca2+ was seen in the nucleus. Afterward, it was also observed to be distributed in the thicken cell wall and intercellular matrix. At the same process, the variations of ATPase activity and Ca2+ were highly similar, ATPase activity was mainly located on the plasma membrane in early embryogenic cells. With further development, it was also observed to be distributed in endoplasm, nucleus and vacuoles, with the thickening of embryogenic cell wall, ATPase activity was found in the thickened region and the intercellular space. However, the variations of ATPase activity and Ca2+ have not clearly observed variety dynamics at the nonembryogenic callus, and with further vacuolation of nonembryogenic cell, Ca2+ content and ATPase activity gradually drop. It was indicated there was a closely relationship between the dynamics of Ca2+ and ATPase activity in somatic embryogenesis by 2,4-D induced. And the space-time distribution of Ca2+ and ATPase activity play a key role on signal transmission and the regulation of relevant gene expression.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Adenosina Trifosfatases/metabolismo , Cálcio/metabolismo , Lycium/embriologia , Plantas Medicinais/embriologia , Técnicas de Cultura , Lycium/metabolismo , Lycium/ultraestrutura , Microscopia Eletrônica , Folhas de Planta/embriologia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Medicinais/metabolismo , Plantas Medicinais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA