Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Hazard Mater ; 478: 135542, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39154481

RESUMO

Epidemiological studies have shown that coke oven emissions (COEs) affect the deterioration of asthma, but has not been proven by experimental results. In this study, we found for the first time that COEs exacerbate allergen house dust mite (HDM)-induced allergic asthma in the mouse model. The findings reveal that airway inflammation, airway remodeling and allergic reaction were aggravated in the COE + HDM combined exposure group compared with the individual exposure group. Mechanism studies indicated higher levels of iron and MDA in the COE + HDM combined exposure group, along with increased expression of Ptgs2 and reduced GPX4 expression. Iron chelator deferoxamine (DFO) effectively inhibited ferroptosis induced by COE synergistically with HDM in vitro. Further studies highlighted the role of ferritinophagy in the COE + HDM-induced ferroptosis. 3-methyladenine (3-MA) could inhibit ferroptosis in the COE + HDM exposure group. Interestingly, we injected DFO intraperitoneally into mice in the combined exposure group and found DFO could significantly inhibit the COE-exacerbated ferroptosis and allergic asthma. Our findings link ferroptosis with COE-exacerbated allergic asthma, implying that ferroptosis may have important therapeutic potential for asthma in patients with occupational exposure of COE.


Assuntos
Asma , Células Epiteliais , Ferroptose , Camundongos Endogâmicos BALB C , Animais , Ferroptose/efeitos dos fármacos , Asma/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Pyroglyphidae/imunologia , Camundongos , Desferroxamina/farmacologia , Feminino , Poluentes Atmosféricos/toxicidade , Ferro/metabolismo , Ciclo-Oxigenase 2/metabolismo
2.
J Adv Res ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39187236

RESUMO

INTRODUCTION: Extensive studies have established the correlation between long-term PM2.5 exposure and lung cancer, yet the mechanisms underlying this association remain poorly understood. PIWI-interacting RNAs (piRNAs), a novel category of small non-coding RNAs, serve important roles in various diseases. However, their biological function and mechanism in PM2.5-induced lung cancer have not been thoroughly investigated. OBJECTIVES: We aimed to explore the oncogenic role of piRNA in lung cancer induced by PM2.5 exposure, as well as the underlying mechanisms. METHODS: We conducted a PM2.5-induced human lung epithelial cell malignant transformation model. Human samples were used to further verify the finding. In vitro proliferation, migration, and invasion assays were performed to study the function of piRNA. RNA-sequencing was used to elucidate the the mechanisms of how piRNA mediates cell functions. PiRNA pull-down and computational docking analysis were conducted to identify proteins that binding to piRNA. In vivo experiments were used to explore whether inhibition of PMLCPIR could have a therapeutic effect on lung cancer. RESULTS: We identified a new up-regulated piRNA, termed PM2.5-induced lung cancer up-regulation piRNA (PMLCPIR), which promotes the proliferation of PM2.5-transformed cells and lung cancer cells. RNA sequencing revealed ITGB1 as a downstream target of PMLCPIR. Importantly, PMLCPIR binds to nucleolin (NCL) and increases the expression of its target gene, ITGB1, thereby activating PI3K/AKT signaling. The inhibition of PMLCPIR could promote apoptosis in lung cancer cells and enhance their chemosensitivity to anti-tumor drugs. CONCLUSION: We systematically identified the alterations of piRNA expression profiles in the PM2.5-induced malignant transformation model. Then, PMLCPIR was recognized as a novel oncogenic piRNA in PM2.5-induced lung cancer. Mechanically, PMLCPIR binds to NCL, enhancing ITGB1 expression and activating the ontogenetic PI3K/AKT signaling, potentially contributing to lung cancer progression. This study provides novel insights into the revelation of a new epigenetic regulator in PM2.5-induced lung cancer.

3.
Environ Int ; 190: 108928, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106633

RESUMO

PM2.5 pollution has been associated with the incidence of lung cancer, but the underlying mechanism is still unclear. PIWI-interacting RNAs (piRNAs), initially identified in germline cells, have emerged as a novel class of small non-coding RNAs (26 - 32 nucleotides) with diverse functions in various diseases, including cancer. However, the role and mechanism of piRNAs in the development of PM2.5-induced lung cancer remain to be clarified. In the presented study, we used a PM2.5-induced malignant transformation cell model to analyze the change of piRNA profiles. Among the disturbed piRNAs, piR-27222 was identified as an oncogene that inhibited cell death in a m6A-dependent manner. Mechanistically, we found that piR-27222 could deubiquitinate and stabilize eIF4B by directly binding to eIF4B and reducing its interaction with PARK2. The enhanced expression of eIF4B, in turn, promoted the expression of WTAP, leading to increased m6A modification in the Casp8 transcript. Consequently, the stability of Casp8 transcripts was reduced, rendering lung cancer cells resistant to PANoptosis. Collectively, our findings reveal that PM2.5 exposure up-regulated piR-27222 expression, which could affect EIF4B/WTAP/m6A axis, thereby inhibiting PANoptosis of cells and promoting lung cancer. Our study provides new insights into understanding the epigenetic mechanisms underlining PM2.5-induced lung cancer.


Assuntos
Neoplasias Pulmonares , Material Particulado , RNA Interferente Pequeno , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Material Particulado/toxicidade , Humanos , Poluentes Atmosféricos/toxicidade
4.
Ecotoxicol Environ Saf ; 277: 116330, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636406

RESUMO

PIWI-interacting RNAs (piRNAs) is an emerging class of small non-coding RNAs that has been recently reported to have functions in infertility, tumorigenesis, and multiple diseases in humans. Previously, 5 toxicity pathways were proposed from hundreds of toxicological studies that underlie BaP-induced lung injuries, and a "Bottom-up" approach was established to identify small non-coding RNAs that drive BaP-induced pulmonary effects by investigating the activation of these pathways in vitro, and the expression of the candidate microRNAs were validated in tissues of patients with lung diseases from publications. Here in this study, we employed the "Bottom-up" approach to identifying the roles of piRNAs and further validated the mechanisms in vivo using mouse acute lung injury model. Specifically, by non-coding RNA profiling in in vitro BaP exposure, a total of 3 suppressed piRNAs that regulate 5 toxicity pathways were proposed, including piR-004153 targeting CYP1A1, FGFR1, ITGA5, IL6R, NGRF, and SDHA, piR-020326 targeting CDK6, and piR-020388 targeting RASD1. Animal experiments demonstrated that tail vein injection of respective formulated agomir-piRNAs prior to BaP exposure could all alleviate acute lung injury that was shown by histopathological and biochemical evidences. Immunohistochemical evaluation focusing on NF-kB and Bcl-2 levels showed that exogenous piRNAs protect against BaP-induced inflammation and apoptosis, which further support that the inhibition of the 3 piRNAs had an important impact on BaP-induced lung injuries. This mechanism-driven, endpoint-supported result once again confirmed the plausibility and efficiency of the approach integrating in silico, in vitro, and in vivo evidences for the purpose of identifying key molecules.


Assuntos
Lesão Pulmonar Aguda , Benzo(a)pireno , RNA de Interação com Piwi , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Benzo(a)pireno/toxicidade , Camundongos Endogâmicos C57BL
5.
Ecotoxicol Environ Saf ; 277: 116401, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677069

RESUMO

Exposure to fine particulate matter (PM) is associated with the neurodegenerative diseases. Coke oven emissions (COEs) in occupational environment are important sources of PM. However, its neurotoxicity is still unclear. Therefore, evaluating the toxicological effects of COE on the nervous system is necessary. In the present study, we constructed mouse models of COE exposure by tracheal instillation. Mice exposed to COE showed signs of cognitive impairment. This was accompanied by a decrease in miR-145a-5p and an increase in SIK1 expression in the hippocampus, along with synaptic structural damage. Our results demonstrated that COE-induced miR-145a-5p downregulation could increase the expression of SIK1 and phosphorylated SIK1, inhibiting the cAMP/PKA/CREB pathway by activating PDE4D, which was associated with reduced synaptic structural plasticity. Furthermore, restoring of miR-145a-5p expression based on COE exposure in HT22 cells could partially reversed the negative effects of COE exposure through the SIK1/PDE4D/cAMP axis. Collectively, our findings link epigenetic regulation with COE-induced neurotoxicity and imply that miR-145a-5p could be an early diagnostic marker for neurological diseases in patients with COE occupational exposure.


Assuntos
Disfunção Cognitiva , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , MicroRNAs , Plasticidade Neuronal , Proteínas Serina-Treonina Quinases , Animais , MicroRNAs/genética , Camundongos , Disfunção Cognitiva/induzido quimicamente , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , AMP Cíclico/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade
6.
Cell Death Dis ; 15(1): 5, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177154

RESUMO

Neuroblastoma (NB) is a challenging pediatric extracranial solid tumor characterized by a poor prognosis and resistance to chemotherapy. Identifying targets to enhance chemotherapy sensitivity in NB is of utmost importance. Increasing evidence implicates long noncoding RNAs (lncRNAs) play important roles in cancer, but their functional roles remain largely unexplored. Here, we analyzed our RNA sequencing data and identified the upregulated lncRNA ZNF674-AS1 in chemotherapy non-responsive NB patients. Elevated ZNF674-AS1 expression is associated with poor prognosis and high-risk NB. Importantly, targeting ZNF674-AS1 expression in NB cells suppressed tumor growth in vivo. Further functional studies have revealed that ZNF674-AS1 constrains cisplatin sensitivity by suppressing pyroptosis and promoting cell proliferation. Moreover, ZNF674-AS1 primarily relies on CA9 to fulfill its functions on cisplatin resistance. High CA9 levels were associated with high-risk NB and predicted poor patient outcomes. Mechanistically, ZNF674-AS1 directly interacted with the RNA binding protein IGF2BP3 to enhance the stability of CA9 mRNA by binding with CA9 transcript, leading to elevated CA9 expression. As a novel regulator of CA9, IGF2BP3 positively upregulated CA9 expression. Together, these results expand our understanding of the cancer-associated function of lncRNAs, highlighting the ZNF674-AS1/IGF2BP3/CA9 axis as a constituting regulatory mode in NB tumor growth and cisplatin resistance. These insights reveal the pivotal role of ZNF674-AS1 inhibition in recovering cisplatin sensitivity, thus providing potential therapeutic targets for NB treatment.


Assuntos
Anidrase Carbônica IX , MicroRNAs , Neuroblastoma , RNA Longo não Codificante , Criança , Humanos , Antígenos de Neoplasias , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Piroptose , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
Food Chem Toxicol ; 182: 114199, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000460

RESUMO

Benzo(a)Pyrene (BaP) is a well-known environmental carcinogen that poses a significant risk to human health. The pivotal genes and toxicity pathways have been identified as key events to construct the mode of action (MOA) of BaP. In this study, we focused on evaluating the association between genetic variants in BaP-disturbed toxicity pathways and the susceptibility of laryngeal squamous cell carcinoma (LSCC), based on the data of our previous genome-wide association analysis (GWAS). In addition, we investigated the biological roles of these significant polymorphisms by integrating bioinformatic annotation and experimental validation. Our findings revealed that 15 functional polymorphisms in AHR signaling, p53 signaling, NRF2 signaling, TGF-ß signaling, STAT3 signaling, and IL-8 signaling pathways were significantly associated with susceptibility to LSCC. Our study provides a novel approach for identifying novel risk genetic loci utilizing GWAS data, and suggests potential targets for early detection of LSCC in the future.


Assuntos
Benzo(a)pireno , Neoplasias de Cabeça e Pescoço , Humanos , Benzo(a)pireno/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estudo de Associação Genômica Ampla , Polimorfismo Genético
8.
Cell Death Discov ; 9(1): 311, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626043

RESUMO

Alcohol abuse is a significant cause of global morbidity and mortality, with alcoholic liver disease (ALD) being a common consequence. The pathogenesis of ALD involves various cellular processes, including oxidative stress, inflammation, and hepatic cell death. Recently, ferroptosis, an iron-dependent form of programmed cell death, has emerged as a potential mechanism in many diseases. However, the specific involvement and regulatory mechanisms of ferroptosis in ALD remain poorly understood. Here we aimed to investigate the presence and mechanism of alcohol-induced ferroptosis and the involvement of miRNAs in regulating ferroptosis sensitivity. Our findings revealed that long-term ethanol feeding induced ferroptosis in male mice, as evidenced by increased expression of ferroptosis-related genes, lipid peroxidation, and labile iron accumulation in the liver. Furthermore, we identified dysregulation of the methionine cycle and transsulfuration pathway, leading to severe glutathione (GSH) exhaustion and indirect deactivation of glutathione peroxidase 4 (GPx4), a critical enzyme in preventing ferroptosis. Additionally, we identified miR-214 as a ferroptosis regulator in ALD, enhancing hepatocyte ferroptosis by transcriptionally activating the expression of ferroptosis-driver genes. Our study provides novel insights into the involvement and regulatory mechanisms of ferroptosis in ALD, highlighting the potential therapeutic implications of targeting ferroptosis and miRNAs in ALD management.

9.
Environ Sci Technol ; 57(17): 6854-6864, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37071573

RESUMO

Fine particulate matter (PM2.5) exposure causes DNA mutations and abnormal gene expression leading to lung cancer, but the detailed mechanisms remain unknown. Here, analysis of genomic and transcriptomic changes upon a PM2.5 exposure-induced human bronchial epithelial cell-based malignant transformed cell model in vitro showed that PM2.5 exposure led to APOBEC mutational signatures and transcriptional activation of APOBEC3B along with other potential oncogenes. Moreover, by analyzing mutational profiles of 1117 non-small cell lung cancers (NSCLCs) from patients across four different geographic regions, we observed a significantly higher prevalence of APOBEC mutational signatures in non-smoking NSCLCs than smoking in the Chinese cohorts, but this difference was not observed in TCGA or Singapore cohorts. We further validated this association by showing that the PM2.5 exposure-induced transcriptional pattern was significantly enriched in Chinese NSCLC patients compared with other geographic regions. Finally, our results showed that PM2.5 exposure activated the DNA damage repair pathway. Overall, here we report a previously uncharacterized association between PM2.5 and APOBEC activation, revealing a potential molecular mechanism of PM2.5 exposure and lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Mutação , Células Epiteliais , Material Particulado/efeitos adversos , Genômica , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Antígenos de Histocompatibilidade Menor/efeitos adversos , Antígenos de Histocompatibilidade Menor/metabolismo
10.
Environ Pollut ; 319: 120981, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587786

RESUMO

Numerous studies have revealed that ambient long-term exposure to fine particulate matter (PM2.5) is significantly related to the development of lung cancer, but the molecular mechanisms of PM2.5 exposure-induced lung cancer remains unknown. As an important epigenetic regulator, microRNAs (miRNAs) play vital roles in responding to environment exposure and various diseases including lung cancer development. Here we constructed a PM2.5-induced malignant transformed cell model and found that miR-200 family, especially miR-200a-3p, was involved in the process of PM2.5 induced lung cancer. Further investigation of the function of miR-200 family (miR-200a-3p as a representative revealed that miR-200a-3p promoted cell migration by directly suppressing TNS3 expression. These results suggested that ambient PM2.5 exposure may increase the expression of miR-200 family and then promote the proliferation and migration of lung cancer cells. Our study provided novel model and insights into the molecular mechanism of ambient PM2.5 exposure-induced lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/metabolismo , Material Particulado/toxicidade , Material Particulado/metabolismo , Células Epiteliais/patologia , Transformação Celular Neoplásica/metabolismo
11.
J Hazard Mater ; 443(Pt A): 130191, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36272375

RESUMO

Cadmium (Cd) is a common environmental pollutant that can damage multiple organs, including the kidney. To prevent renal effects, international authorities have set health-based guidance values of Cd from epidemiological studies. To explore the health risk of Cd exposure and whether human equivalent doses (HEDs) derived from in vitro tests match the current guidance values, we integrated renal tubular epithelial cell-based assays with a physiologically based toxicokinetic model combined with the Monte Carlo method. For females, the HEDs (µg/kg/week) derived from KE2 (DNA damage), KE3 (cell cycle arrest), and KE4 (apoptosis) were 0.20 (2.5th-97.5th percentiles: 0.09-0.48), 0.52 (0.24-1.26), and 2.73 (1.27-6.57), respectively; for males the respective HEDs were 0.23 (0.10-0.49), 0.60 (0.27-1.30), and 3.11 (1.39-6.78). Among them, HEDKE4 (female) was close to the tolerable weekly intake (2.5 µg/kg/week) set by the European Food Safety Authority. The margin of exposure (MOE) derived from HEDKE4 (female) indicated that risks of renal toxicity for populations living in cadmium-contaminated regions should be of concern. This study provided a new approach methodology (NAM) for environmental chemical risk assessment using in silico and in vitro methods.


Assuntos
Cádmio , Poluentes Ambientais , Masculino , Feminino , Humanos , Cádmio/toxicidade , Cádmio/análise , Toxicocinética , Medição de Risco , Técnicas In Vitro , Exposição Ambiental/análise
12.
Ecotoxicol Environ Saf ; 249: 114361, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508832

RESUMO

Perfluorooctane sulfonate (PFOS) and its alternative 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) are ubiquitous in various environmental and human samples. They have been reported to have hepatotoxicity effects, but the potential mechanisms remain unclear. Herein, we integrated metabolomics and proteomics analysis to investigate the altered profiles in metabolite and protein levels in primary human hepatocytes (PHH) exposed to 6:2 Cl-PFESA and PFOS at human exposure relevant concentrations. Our results showed that 6:2 Cl-PFESA exhibited higher perturbation effects on cell viability, metabolome and proteome than PFOS. Integration of metabolomics and proteomics revealed that the alteration of glycerophospholipid metabolism was the critical pathway of 6:2 Cl-PFESA and PFOS-induced lipid metabolism disorder in primary human hepatocytes. Interestingly, 6:2 Cl-PFESA-induced cellular metabolic process disorder was associated with the cellular membrane-bounded signaling pathway, while PFOS was associated with the intracellular transport process. Moreover, the disruption effects of 6:2 Cl-PFESA were also involved in inositol phosphate metabolism and phosphatidylinositol signaling system. Overall, this study provided comprehensive insights into the hepatic lipid toxicity mechanisms of 6:2 Cl-PFESA and PFOS in human primary hepatocytes.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Humanos , Ácidos Sulfônicos , Éter , Proteômica , Ácidos Alcanossulfônicos/toxicidade , Éteres , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Hepatócitos , Metabolômica
13.
Environ Pollut ; 313: 120194, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36150622

RESUMO

Occupational lung cancer caused by coke oven emissions (COE) has attracted increasing attention, but the mechanism is not clear. Many evidences show ceRNA (competing endogenous RNA) networks play important regulatory roles in cancers. In this study, we aimed to construct and verify the ceRNA regulatory network in the occurrence of COE-induced lung squamous cell carcinoma (LUSC). We performed RNA sequencing with lung bronchial epithelial cell (16HBE) and COE induced malignant transformed cell (Rf). Furthermore, we analyzed RNA sequencing data of LUSC and adjacent tissues in the cancer genome atlas (TCGA) database. Combined our data and TCGA data to determine the differentially expressed lncRNAs, miRNAs, mRNAs. lncBASE, miRDB and miRTarBase were used to predict the binding relationship between lncRNA and miRNA, miRNA and mRNA. Based on these, we construct the ceRNA network. FREMSA, dual-luciferase reporter assay, quantitative real-time PCR (qRT-PCR), western-blot were used to verify the regulatory axis. CCK8 assay, phalloidin staining, p53 detection were used to explore the roles of this axis in the COE induced malignant transformation. Results showed 7 lncRNAs, 7 miRNAs and 146 mRNAs were identified. Among these, we constructed a ceRNA network including 1 lncRNA, 2 miRNAs and 9 mRNAs. Further verification confirmed the trend of lncRNA H19, miR-29a-3p and COL1A1 were consistent with sequencing results. H19 and COL1A1 were significantly higher in Rf than in 16HBE and miR-29a-3p was reverse. Regulatory investigation revealed H19 increased COL1A1 expression by sponging miR-29a-3p. Knockdown of H19, COL1A1 or overexpression of miR-29a-3p in Rf cells could inhibit cell proliferation, increased cell adhesion and p53 level. However, knockdown of H19 while suppressing the miR-29a-3p partially rescue the malignant phenotype of Rf caused by H19. In conclusion, all these indicated H19 functioned as a ceRNA to increase COL1A1 by sponging miR-29a-3p and promoted COE-induced cell malignant transformation.


Assuntos
Carcinoma de Células Escamosas , Coque , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante/genética , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Faloidina/metabolismo , RNA Mensageiro/genética , Proteína Supressora de Tumor p53
14.
Part Fibre Toxicol ; 19(1): 42, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739565

RESUMO

BACKGROUND: Long-term exposure to fine particulate matter (PM2.5) increases susceptibility to chronic respiratory diseases, including inflammation and interstitial fibrosis. However, the regulatory mechanisms by which the immune response mediates the initiation of pulmonary fibrosis has yet to be fully characterized. This study aimed to illustrate the interplay between different cell clusters and key pathways in triggering chronic lung injuries in mice following PM exposure. RESULTS: Six-week-old C57BL/6J male mice were exposed to PM or filtered air for 16 weeks in a real-ambient PM exposure system in Shijiazhuang, China. The transcriptional profiles of whole lung cells following sub-chronic PM exposure were characterized by analysis of single-cell transcriptomics. The IL-17A knockout (IL-17A-/-) mouse model was utilized to determine whether the IL-17 signaling pathway mediated immune dysregulation in PM-induced chronic lung injuries. After 16-week PM exposure, chronic lung injuries with excessive collagen deposition and increased fibroblasts, neutrophils, and monocytes were noted concurrent with a decreased number of major classes of immune cells. Single-cell analysis showed that activation of the IL-17 signaling pathway was involved in the progression of pulmonary fibrosis upon sub-chronic PM exposure. Depletion of IL-17A led to significant decline in chronic lung injuries, which was mainly triggered by reduced recruitment of myeloid-derived suppressor cells (MDSCs) and downregulation of TGF-ß. CONCLUSION: These novel findings demonstrate that immunosuppression via the IL-17A pathway plays a critical role in the initiation of chronic lung injuries upon sub-chronic PM exposure.


Assuntos
Interleucina-17 , Lesão Pulmonar , Fibrose Pulmonar , Animais , Interleucina-17/genética , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/análise , Material Particulado/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Transcriptoma
15.
Sci Total Environ ; 839: 156218, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623527

RESUMO

N, N-dimethylformamide (DMF) is a widely existing harmful environmental pollutant from industrial emission which can threat human health for both occupational and general populations. Epidemiological and experimental studies have indicated liver as the primary target organ of DMF. However, the molecular mechanism under DMF-induced hepatoxicity remains unclear. In the present study, we identified that DMF could induce abnormal autophagy flux in cells. We also showed that DMF-induced mitochondrial dysfunction and lethal mitophagy which further leads to autophagic cell death. Next, miRNA microarray analysis identified miR-92a-1-5p as the most down-regulated miRNA upon DMF exposure. Mechanistically, miR-92a-1-5p regulated mitochondrial function and mitophagy by targeting mitochondrial protein BNIP3L. Exogenous miR-92a-1-5p significantly attenuated DMF-induced mitochondrial dysfunction and mitophagy in vitro and in vivo. Our study highlights the mechanistic link between miRNAs and mitophagy under environmental stress, which provided a new clue for the mitochondrial epigenetics mechanism on environmental toxicant-induced hepatoxicity.


Assuntos
Dimetilformamida , MicroRNAs , Dimetilformamida/toxicidade , Humanos , Fígado/fisiologia , Proteínas de Membrana/genética , MicroRNAs/genética , Mitofagia , Proteínas Proto-Oncogênicas , Proteínas Supressoras de Tumor
16.
Toxicology ; 469: 153133, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183672

RESUMO

To elaborate the molecular mechanism underlying the hepatotoxicity induced by chronic exposure to cadmium (Cd), a mouse model with hepatocyte-specific deletion of Ppp2r1a (encoding protein phosphatase 2 A Aα subunit, PP2A Aα) gene was used to investigate the effect of cadmium exposure on liver injury. The wild type littermates (WT) and PP2A Aα-/- mice (KO) were treated with cadmium chloride (CdCl2) at concentrations of 0 mg/L, 10 mg/L, 100 mg/L in drinking water for 3, 6 and 9 months (KO mice only for 9 months), respectively. The pathological findings were characterized by progressive inflammation, steatosis, and liver fibrosis upon treatment of CdCl2 in a dose-response and time-dependent manner. Notably, PP2A Aα depletion leads to a more profound liver injury induced by CdCl2 treatment. The transcriptome analysis in livers of KO mice revealed 20 differentially expressed microRNAs (miRNAs) appeared in both 3- and 9-month. Particularly, the alterations of miR-34a-5p, miR-345-5p, and miR-30e-5p expressions were implicated in the development of liver disease and correlated with the degree of liver injury induced by cadmium treatment. Further analysis indicated that miR-34a-5p, miR-345-5p, and miR-30e-5p might be involved in CdCl2-induced liver injury, in part by dysregulation of lipid metabolism and inflammation. The in vitro studies showed that miR-34a-5p was involved in regulation of CdCl2-induced cytotoxicity through directly targeted adiponectin receptor 2 (AdipoR2) mRNA. Taken together, we identified that specific miRNAs were implicated in hepatotoxicity induced by chronic exposure to CdCl2. These findings also provide new insight into the role of PP2A in regulation of miRNAs-mediated liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , MicroRNAs , Animais , Cádmio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/genética , Inflamação , Fígado , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Fosfatase 2/genética
17.
Ecotoxicol Environ Saf ; 232: 113248, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35093813

RESUMO

Exposure to fine particulate matter (PM2.5) could damage multiple organs and systems. Recent epidemiological studies have shown that PM2.5 can disrupt dynamic balance of thyroid hormone (TH). However, the underlying mechanism by which PM2.5 interferes with TH remains unclear. This study evaluated the role of Gli-similar3 (GLIS3) in the effect of PM2.5 on TH synthesis in mice using a real-ambient exposure system, in Shijiazhuang City, Hebei Province. The PM2.5exposure group (PM) and filtered air group (FA) were placed in the exposure device for four and eight weeks. The results showed that the PM2.5 exposure altered the structure of the thyroid gland. Moreover, after PM2.5 exposure for eight weeks, the exposure level of free thyroxine (FT4) increased and the expression level of thyroid stimulating hormone (TSH) decreased in serum of mice. In addition, PM2.5 exposure significantly increased the expression of proteins related to thyroid hormone synthesis, such as sodium iodide transporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG). Next, we found that GLIS3 and thyroid transcription factor Paired box 8 (PAX8) also increased after PM2.5 exposure. In order to further explore the potential molecular mechanism, we carried out transcriptome sequencing. KEGG analysis of the top 10 pathways revealed that the Ras-associated protein 1 (Rap1) signaling pathway could activate transcription factors and is related to thyroid cell survival. Additionally, PM2.5 exposure significantly increased the protein levels of Rap1 and its active form (Rap1 +GTP). We speculate that the active state of Rap1 is believed to be involved in activating the expression of transcription factor GLIS3. In conclusion, PM2.5 exposure induces histological changes in the thyroid gland and thyroid dysfunction in mice. The exposure activates GLIS3 through the Rap1/PI3K/AKT pathway to promote the expression of proteins related to thyroid hormone synthesis, leading to increased dysregulating TH homeostasis.


Assuntos
Fosfatidilinositol 3-Quinases , Glândula Tireoide , Animais , Proteínas de Ligação a DNA/metabolismo , Homeostase , Camundongos , Material Particulado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Transativadores/metabolismo
18.
J Hazard Mater ; 424(Pt C): 127624, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740159

RESUMO

To identify key signaling pathways involved in ambient particulate matter (PM)-induced pulmonary injury, we generated a mouse model with myeloid-specific deletion of Ppp2r1a gene (encoding protein phosphatase 2 A (PP2A) A subunit), and conducted experiments in a real-ambient PM exposure system. PP2A Aα-/- homozygote (Aα HO) mice and matched wild-type (WT) littermates were exposed to PM over 3-week and 6-week. The effects of PM exposure on pulmonary inflammation, oxidative stress, and apoptosis were significantly enhanced in Aα HO compared to WT mice. The number of pulmonary macrophages increased by 74.8~88.0% and enhanced M1 polarization appeared in Aα HO mice upon PM exposure. Secretion of M1 macrophage-related inflammatory cytokines was significantly increased in Aα HO vs. WT mice following PM exposure. Moreover, we demonstrated that PP2A-B56α holoenzyme regulated M1 polarization and that the mTOR signaling pathway mediated the persistent M1 polarization upon PM2.5 exposure. Importantly, PP2A-B56α holoenzyme was shown to complex with mTOR/p70S6K/4E-BP1, and suppression of B56α led to enhanced phosphorylation of mTOR, p70S6K, and 4E-BP1. These observations demonstrate that the PP2A-mTOR-p70S6K/4E-BP1 signaling is a critical pathway in mediating macrophage M1 polarization, which contributes to PM-induced pulmonary injury.


Assuntos
Lesão Pulmonar , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Lesão Pulmonar/induzido quimicamente , Macrófagos Alveolares , Camundongos , Material Particulado/toxicidade , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
19.
Biochem Pharmacol ; 197: 114897, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34968487

RESUMO

Acetaminophen (APAP) overdose is one of the leading causes of acute liver failure in the US and other developed countries, the molecular mechanisms of APAP-induced hepatotoxicity remain speculative. PIWI-interacting RNAs (piRNAs), a novel class of small non-coding RNAs, have been identified as epigenetic regulators of transposon silencing, mRNA deadenylation, and elimination. However, the functional role of piRNAs in APAP-induced liver injury remains unclear. In the current study, the piRNA profiles were constructed in HepaRG cells after APAP exposure, and the roles of piR-23210 in regulating nuclear receptors (NRs) expression, metabolizing enzymes expression, and consequently APAP-induced liver injury were systematically investigated. As a result, 57 upregulated piRNAs were identified after APAP exposure, indicating the stress-response characteristic of piRNA molecules. Subsequent in vitro and in vivo experiments proved that piR-23210 is a novel self-protective molecule that targets HNF1A and HNF4A transcripts by interacting with RNA binding protein Nucleolin (NCL), suppresses downstream CYPs (CYP2E1, CYP3A4, and CYP1A2) expression, and protects against APAP-induced liver injury. In conclusion, our findings provided new mechanistic clues revealing potential protective role of a piRNA against the hepatoxicity of APAP.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células HEK293 , Células Hep G2 , Fator 1-alfa Nuclear de Hepatócito/antagonistas & inibidores , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/administração & dosagem
20.
J Hazard Mater ; 426: 128089, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34933256

RESUMO

The dynamic network biomarkers (DNBs) are designed to identify the tipping point and specific molecules in initiation of PM2.5-induced lung cancers. To discover early-warning signals, we analyzed time-series gene expression datasets over a course of PM2.5 organic extraction-induced human bronchial epithelial (HBE) cell transformation (0th~16th week). A composition index of DNB (CIDNB) was calculated to determine correlations and fluctuations in molecule clusters at each timepoint. We identified a group of genes with the highest CIDNB at the 10th week, implicating a tipping point and corresponding DNBs. Functional experiments revealed that manipulating respective DNB genes at the tipping point led to remarkable changes in malignant phenotypes, including four promoters (GAB2, NCF1, MMP25, LAPTM5) and three suppressors (BATF2, DOK3, DAP3). Notably, co-altered expression of seven core DNB genes resulted in an enhanced activity of malignant transformation compared to effects of single-gene manipulation. Perturbation of pathways (EMT, HMGB1, STAT3, NF-κB, PTEN) appeared in HBE cells at the tipping point. The core DNB genes were involved in regulating lung cancer cell growth and associated with poor survival, indicating their synergistic effects in initiation and development of lung cancers. These findings provided novel insights into the mechanism of dynamic networks attributable to PM2.5-induced cell transformation.


Assuntos
Neoplasias Pulmonares , NF-kappa B , Biomarcadores , Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Material Particulado/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA