Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 31(1): 94-107, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949945

RESUMO

The replication-stress response is essential to ensure the faithful transmission of genetic information to daughter cells. Although several stress-resolution pathways have been identified to deal with replication stress, the precise regulatory mechanisms for replication fork stability are not fully understood. Our study identified Methyl-CpG Binding Domain 1 (MBD1) as essential for the maintaining genomic stability and protecting stalled replication forks in mammalian cells. Depletion of MBD1 increases DNA lesions and sensitivity to replication stress. Mechanistically, we found that loss of MBD1 leads to the dissociation of Poly(ADP-ribose) polymerase 1 (PARP1) from the replication fork, potentially accelerating fork progression and resulting in higher levels of transcription-replication conflicts (T-R conflicts). Using a proximity ligation assay combined with 5-ethynyl-2'-deoxyuridine, we revealed that the MBD1 and PARP1 proteins were recruited to stalled forks under hydroxyurea (HU) treatment. In addition, our study showed that the level of R-loops also increased in MBD1-delated cells. Without MBD1, stalled replication forks resulting from T-R conflicts were primarily degraded by the DNA2 nuclease. Our findings shed light on a new aspect of MBD1 in maintaining genome stability and providing insights into the mechanisms underlying replication stress response.


Assuntos
Dano ao DNA , Replicação do DNA , Humanos , Animais , Instabilidade Genômica , Mamíferos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(45): 28239-28250, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33109719

RESUMO

Aberrant programmed cell death protein 1 (PD-1) expression on the surface of T cells is known to inhibit T cell effector activity and to play a pivotal role in tumor immune escape; thus, maintaining an appropriate level of PD-1 expression is of great significance. We identified KLHL22, an adaptor of the Cul3-based E3 ligase, as a major PD-1-associated protein that mediates the degradation of PD-1 before its transport to the cell surface. KLHL22 deficiency leads to overaccumulation of PD-1, which represses the antitumor response of T cells and promotes tumor progression. Importantly, KLHL22 was markedly decreased in tumor-infiltrating T cells from colorectal cancer patients. Meanwhile, treatment with 5-fluorouracil (5-FU) could increase PD-1 expression by inhibiting the transcription of KLHL22. These findings reveal that KLHL22 plays a crucial role in preventing excessive T cell suppression by maintaining PD-1 expression homeostasis and suggest the therapeutic potential of 5-FU in combination with anti-PD-1 in colorectal cancer patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Homeostase , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Fluoruracila , Células HEK293 , Humanos , Proteínas de Checkpoint Imunológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise , Transdução de Sinais , Transcriptoma , Microambiente Tumoral/imunologia , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA