Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105782, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395304

RESUMO

Intracellular vesicle fusion is driven by the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cofactors, including Sec1/Munc18 (SM), α-SNAP, and NSF. α-SNAP and NSF play multiple layers of regulatory roles in the SNARE assembly, disassembling the cis-SNARE complex and the prefusion SNARE complex. How SM proteins coupled with NSF and α-SNAP regulate SNARE-dependent membrane fusion remains incompletely understood. Munc18c, an SM protein involved in the exocytosis of the glucose transporter GLUT4, binds and activates target (t-) SNAREs to accelerate the fusion reaction through a SNARE-like peptide (SLP). Here, using an in vitro reconstituted system, we discovered that α-SNAP blocks the GLUT4 SNAREs-mediated membrane fusion. Munc18c interacts with t-SNAREs to displace α-SNAP, which overcomes the fusion inhibition. Furthermore, Munc18c shields the trans-SNARE complex from NSF/α-SNAP-mediated disassembly and accelerates SNARE-dependent fusion kinetics in the presence of NSF and α-SNAP. The SLP in domain 3a is indispensable in Munc18c-assisted resistance to NSF and α-SNAP. Together, our findings demonstrate that Munc18c protects the prefusion SNARE complex from α-SNAP and NSF, promoting SNARE-dependent membrane fusion through its SLP.


Assuntos
Fusão de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Fusão de Membrana/fisiologia , Proteínas Munc18/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Organelas/metabolismo , Peptídeos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Animais , Camundongos
2.
Cell Signal ; 117: 111096, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38346528

RESUMO

IL-36 is known to mediate inflammation and fibrosis. Nevertheless, IL-36 signalling axis has also been implicated in cancer, although understanding of exact contribution of IL-36 to cancer progression is very limited, partly due to existence of multiple IL-36 ligands with agonistic and antagonistic function. Here we explored the role of IL-36 in oral squamous cell carcinoma (OSCC). Firstly, we analyzed expression of IL-36 ligands and receptor and found that the expression of IL-36γ was significantly higher in head and neck cancer (HNSCC) than that of normal tissues, and that the high expression of IL-36γ predicted poor clinical outcomes. Secondly, we investigated the direct effect of IL-36γ on OSCC cells and found that IL-36γ stimulated proliferation of OSCC cells with high expression of IL-36R expression. Interestingly, IL-36γ also promoted migration of OSCC cells with low to high IL-36R expression. Critically, both proliferation and migration of OSCC cells induced by IL-36γ were abrogated by anti-IL-36R mAb. Fittingly, RNA sequence analysis revealed that IL-36γ regulated genes involved in cell cycle and cell division. In summary, our results showed that IL-36γ can be a tumor-promoting factor, and targeting of IL-36R signalling may be a beneficial targeted therapy for patients with abnormal IL-36 signalling.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proliferação de Células , Linhagem Celular Tumoral
3.
Int J Biol Macromol ; 254(Pt 2): 127719, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918601

RESUMO

Transplantation of pancreatic islet cells is a promising strategy for the long-term treatment of type 1 diabetes (T1D). The stem cell-derived beta cells showed great potential as substitute sources of transplanted pancreatic islet cells. However, the current efficiency of stem cell differentiation still cannot match the requirements for clinical transplantation. Here, we report that microvesicles (MVs) from insulin-producing INS-1 cells could induce mesenchymal stem cell (MSC) differentiation into pancreatic beta-like cells. The combination of MVs with small molecules, nicotinamide and insulin-transferrin-selenium (ITS), dramatically improved the efficiency of MSC differentiation. Notably, the function of MVs in MSC differentiation requires their entry into MSCs through giant pinocytosis. The MVs-treated or MVs combined with small molecules-treated MSCs show pancreatic beta-like cell morphology and response to glucose stimulation in insulin secretion. Using high throughput small RNA-sequencing, we found that MVs induced MSC differentiation into the beta-like cells through miR-181a-5p/150-5p. Together, our findings reveal the role of MVs or the MV-enriched miR-181a-5p/150-5p as a class of biocompatible reagents to differentiate MSCs into functional beta-like cells and demonstrate that the combined usage of MVs or miR-181a-5p/150-5p with small molecules can potentially be used in making pancreatic islet cells for future clinical purposes.


Assuntos
Micropartículas Derivadas de Células , Células-Tronco Mesenquimais , MicroRNAs , Diferenciação Celular , Insulina , MicroRNAs/genética
4.
Nano Lett ; 23(17): 8081-8090, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37615340

RESUMO

Since central cells are more malignant and aggressive in solid tumors, improving penetration of therapeutic agents and activating immunity in tumor centers exhibit great potential in cancer therapies. Here, polydopamine-coated Escherichia coli Nissle 1917 (EcN) bearing CRISPR-Cas9 plasmid-loaded liposomes (Lipo-P) are applied for enhanced immunotherapy in deep tumors through activation of innate and adaptive immunity simultaneously. After accumulation in the tumor center through hypoxia targeting, Lipo-P could be detached under the reduction of reactive oxygen species (ROS)-responsive linkers, lowering the thermal resistance of cancer cells via Hsp90α depletion. Owing to that, heating induced by polydopamine upon near-infrared irradiation could achieve effective tumor ablation. Furthermore, mild photothermal therapy induces immunogenic cell death, as bacterial infections in tumor tissues trigger innate immunity. This bacteria-assisted approach provides a promising photothermal-sensitized immunotherapy in deep tumors.


Assuntos
Neoplasias , Probióticos , Humanos , Sistemas CRISPR-Cas/genética , Imunoterapia , Neoplasias/terapia , Escherichia coli/genética , Lipossomos
5.
Cell Mol Life Sci ; 80(3): 77, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36853333

RESUMO

Oxysterol-binding protein (OSBP) and its related proteins (ORPs) are a family of lipid transfer proteins (LTPs) that mediate non-vesicular lipid transport. ORP9 and ORP10, members of the OSBP/ORPs family, are located at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCSs). It remained unclear how they mediate lipid transport. In this work, we discovered that ORP9 and ORP10 form a binary complex through intermolecular coiled-coil (CC) domain-CC domain interaction. The PH domains of ORP9 and ORP10 specially interact with phosphatidylinositol 4-phosphate (PI4P), mediating the TGN targeting. The ORP9-ORP10 complex plays a critical role in regulating PI4P levels at the TGN. Using in vitro reconstitution assays, we observed that while full-length ORP9 efficiently transferred PI4P between two apposed membranes, the lipid transfer kinetics was further accelerated by ORP10. Interestingly, our data showed that the PH domains of ORP9 and ORP10 participate in membrane tethering simultaneously, whereas ORDs of both ORP9 and ORP10 are required for lipid transport. Furthermore, our data showed that the depletion of ORP9 and ORP10 led to increased vesicle transport to the plasma membrane (PM). These findings demonstrate that ORP9 and ORP10 form a binary complex through the CC domains, maintaining PI4P homeostasis at ER-TGN MCSs and regulating vesicle trafficking.


Assuntos
Retículo Endoplasmático , Fosfatos de Fosfatidilinositol , Transporte Biológico , Membrana Celular , Rede trans-Golgi/metabolismo , Proteínas de Membrana/metabolismo
6.
Front Bioeng Biotechnol ; 11: 1101673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741768

RESUMO

The burden of cancer is increasing, being widely recognized as one of the main reasons for deaths among humans. Despite the tremendous efforts that have been made worldwide to stem the progression and metastasis of cancer, morbidity and mortality in malignant tumors have been clearly rising and threatening human health. In recent years, nanomedicine has come to occupy an increasingly important position in precision oncotherapy, which improves the diagnosis, treatment, and long-term prognosis of cancer. In particular, LDNs with distinctive physicochemical capabilities have provided great potential for advanced biomedical applications, attributed to their large surface area, abundant surface binding sites, and good cellular permeation properties. In addition, LDNs can integrate CT/MR/US/PAI and PTT/PDT/CDT/NDDS into a multimodal theranostic nanoplatform, enabling targeted therapy and efficacy assessments for cancer. This review attempts to concisely summarize the classification and major properties of LDNs. Simultaneously, we particularly emphasize their applications in the imaging, diagnosis, and treatment of cancerous diseases.

7.
Cell Commun Signal ; 21(1): 29, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732831

RESUMO

OBJECTIVES: The inflammatory cascade and cell death post-myocardial ischemia reperfusion (MI/R) are very complex. Despite the understanding that macrophage inflammation has a pivotal role in the pathophysiology of MI/R, the contribution of macrophage inflammatory signals in tailoring the function of vascular endothelium remains unknown. MATERIALS AND METHODS: In the present study, we analyzed the effects of NEDD4 on the NLRP3 inflammasome activation-mediated pyroptosis in vitro after an acute pro-inflammatory stimulus and in vivo in a MI/R mouse model. TTC and Evan's blue dye, Thioflavin S, immunohistochemistry staining, and ELISA were performed in wild-type and NEDD4 deficiency mice. THP-1 cells were transfected with si-NEDD4 or si-SF3A2. HEK293T cells were transfected with NEDD4 or SF3A2 overexpression plasmid. ELISA analyzed the inflammatory cytokines in the cell supernatant. The levels of NEDD4, SF3A2, and NLRP3/GSDMD pathway were determined by Western blot. Protein interactions were evaluated by immunoprecipitation. The protein colocalization in cells was monitored using a fluorescence microscope. RESULTS: NEDD4 inhibited NLRP3 inflammasome activation and pyroptosis in THP-1 cells treated with lipopolysaccharide (LPS) and nigericin (Nig). Mechanistically, NEDD4 maintained the stability of NLRP3 through direct interaction with the SF3A2, whereas the latter association with NLRP3 indirectly interacted with NEDD4 promoting proteasomal degradation of NLRP3. Deletion of NLRP3 expression further inhibited the caspase cascade to induce pyroptosis. Interestingly, inhibiting NLRP3 inflammasome activation in THP-1 cells could prevent cardiac microvascular endothelial cells (CMECs) injury. In addition, NEDD4 deficiency decreased animal survival and increased myocardial infarct size, no-reflow area, and promoted macrophages infiltration post-MI/R. CONCLUSIONS: NEDD4 could be a potential therapeutic target in microvascular injury following myocardial reperfusion. Video Abstract.


Assuntos
Traumatismo por Reperfusão Miocárdica , Piroptose , Camundongos , Animais , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Células Endoteliais/metabolismo , Células HEK293 , Macrófagos/metabolismo , Fatores de Processamento de RNA/metabolismo
8.
Biology (Basel) ; 11(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36290371

RESUMO

Viral diseases of cultivated crops are often caused by virus spillover from wild plants. Tobacco (N. tabacum) is an important economic crop grown globally. The viral pathogens of tobacco are traditional major subjects in virology studies and key considerations in tobacco breeding practices. A positive-strand RNA virus, wild tomato mosaic virus (WTMV), belonging to the genus potyvirus in the family potyviridae was recently found to infect tobacco in China. In this study, diseased tobacco leaf samples were collected in the Henan Province of China during 2020-2021. Several samples from different locations were identified as WTMV positive. An infectious DNA clone was constructed based on one of the WTMV isolates. By using this clone, we found that WTMV from tobacco could establish infections on natural reservoir hosts, demonstrating a possible route of WTMV spillover and overwintering in the tobacco field. Furthermore, the WTMV infection was found to be accompanied by other tobacco viruses in the field. The co-inoculation experiments indicate the superinfection exclusion (SIE) between WTMV and other potyvirus species that infect tobacco. Overall, our work reveals novel aspects of WTMV evolution and infection in tobacco and provides an important tool for further studies of WTMV.

9.
Contrast Media Mol Imaging ; 2022: 4620881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105442

RESUMO

Objective: The purpose of this study is to explore the clinical characteristics and estimate the new-onset atypical right branch bundle block (ATRBBB) predictive value in short-term and long-term mortality by comparing the typical right branch bundle block (TRBBB) subset in acute myocardial infarction (AMI) patients. Methods: A total of 224 AMI patients combined with new onset RBBB who received primary coronary angiography were included, being admitted to Henan Provincial People's Hospital in China from July 2010 to June 2021. Patients were divided into typical RBBB group (n = 104) and atypical RBBB group (n = 120). The differences in clinical characteristics between the two groups were analyzed. Logistic and Cox regression analysis were performed to identify independent predictors of in-hospital Major Adverse Cardiovascular Events (MACE). Result: The ATRBBB group had a higher proportion of smoking and alcohol consumption, higher body mass index, worse cardiac function (killip ≧ II proportion), higher peak value of CK-MB, lower LVEF%, longer total ischemia time, higher proportion of LAD (left anterior descending coronary artery) occlusion, and multivessel lesions, compared to the TRBBB group. The ATRBBB group had a higher proportion of in-hospital MACE and 1-year all-cause mortality compared to the TRBBB group. ATRBBB was an independent predictor of in-hospital MACE and 1-year mortality in patients with AMI combined with new onset RBBB. Conclusions: ATRBBB group had more serious clinical symptoms and clinical prognosis. New ATRBBB is an independent predictor of in-hospital MACE and 1-year death in patients with AMI combined with RBBB. If the infarct-related vessel was opened immediately, the evolution of TRBBB to ATRBBB may be avoided, leading to a better prognosis.


Assuntos
Bloqueio de Ramo , Infarto do Miocárdio , Bloqueio de Ramo/etiologia , Angiografia Coronária/efeitos adversos , Coração , Humanos , Infarto do Miocárdio/epidemiologia , Prognóstico
10.
J Biol Chem ; 298(10): 102470, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087838

RESUMO

Intracellular vesicle fusion requires the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cognate Sec1/Munc18 (SM) proteins. How SM proteins act in concert with trans-SNARE complexes to promote membrane fusion remains incompletely understood. Munc18c, a broadly distributed SM protein, selectively regulates multiple exocytotic pathways, including GLUT4 exocytosis. Here, using an in vitro reconstituted system, we discovered a SNARE-like peptide (SLP), conserved in Munc18-1 of synaptic exocytosis, is crucial to the stimulatory activity of Munc18c in vesicle fusion. The direct stimulation of the SNARE-mediated fusion reaction by SLP further supported the essential role of this fragment. Interestingly, we found SLP strongly accelerates the membrane fusion rate when anchored to the target membrane but not the vesicle membrane, suggesting it primarily interacts with t-SNAREs in cis to drive fusion. Furthermore, we determined the SLP fragment is competitive with the full-length Munc18c protein and specific to the cognate v-SNARE isoforms, supporting how it could resemble Munc18c's activity in membrane fusion. Together, our findings demonstrate that Munc18c facilitates SNARE-dependent membrane fusion through SLP, revealing that the t-SNARE-SLP binding mode might be a conserved mechanism for the stimulatory function of SM proteins in vesicle fusion.


Assuntos
Fusão de Membrana , Proteínas SNARE , Exocitose , Fusão de Membrana/fisiologia , Proteínas Munc18/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteínas SNARE/metabolismo
11.
Chembiochem ; 23(16): e202200216, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35657723

RESUMO

The aggregation of α-synuclein (α-Syn) is a critical pathological hallmark of Parkinson's disease (PD). Prevention of α-Syn aggregation has become a key strategy for treating PD. Recent studies have suggested that α-Syn undergoes liquid-liquid phase separation (LLPS) to facilitate nucleation and amyloid formation. Here, we examined the modulation of α-Syn aggregation by myricetin, a polyhydroxyflavonol compound, under the conditions of LLPS. Unexpectedly, neither the initial morphology nor the phase-separated fraction of α-Syn was altered by myricetin. However, the dynamics of α-Syn condensates decreased upon myricetin binding. Further studies showed that myricetin dose-dependently inhibits amyloid aggregation in the condensates by delaying the liquid-to-solid phase transition. In addition, myricetin could disassemble the preformed α-Syn amyloid aggregates matured from the condensates. Together, our study shows that myricetin inhibits α-Syn amyloid aggregation in the condensates by retarding the liquid-to-solid phase transition and reveals that α-Syn phase transition can be targeted to inhibit amyloid aggregation.


Assuntos
Amiloidose , Doença de Parkinson , Amiloide/química , Proteínas Amiloidogênicas , Flavonoides/farmacologia , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo
12.
FEBS Lett ; 596(11): 1388-1400, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35485974

RESUMO

The aggregation of α-synuclein (α-Syn) is a key pathological hallmark of Parkinson's disease (PD). α-Syn undergoes liquid-liquid phase separation (LLPS) to drive amyloid aggregation. How the LLPS of α-Syn is regulated remains largely unknown. Here, we discovered that the C-terminal region modulates α-Syn phase separation through electrostatic interactions. The wild-type (WT) and PD disease-related truncated α-Syn can co-exist in the condensates. The truncated α-Syn could dramatically promote WT α-Syn phase separation. Further studies demonstrated that the truncated α-Syn accelerated WT α-Syn turning to amyloid aggregates by modulation of phase separation. Together, our findings disclose the role of the C-terminal domain in the LLPS of α-Syn and pave the path for understanding the mechanism of truncated α-Syn in PD pathology.


Assuntos
Amiloidose , Doença de Parkinson , Amiloide/genética , Proteínas Amiloidogênicas , Humanos , Doença de Parkinson/genética , Doença de Parkinson/patologia , alfa-Sinucleína/genética
13.
J Biol Chem ; 298(1): 101469, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871547

RESUMO

α-Synuclein (α-Syn) is the major protein component of Lewy bodies, a key pathological feature of Parkinson's disease (PD). The manganese ion Mn2+ has been identified as an environmental risk factor of PD. However, it remains unclear how Mn2+ regulates α-Syn aggregation. Here, we discovered that Mn2+accelerates α-Syn amyloid aggregation through the regulation of protein phase separation. We found that Mn2+ not only promotes α-Syn liquid-to-solid phase transition but also directly induces soluble α-Syn monomers to form solid-like condensates. Interestingly, the lipid membrane is integrated into condensates during Mn2+-induced α-Syn phase transition; however, the preformed Mn2+/α-syn condensates can only recruit lipids to the surface of condensates. In addition, this phase transition can largely facilitate α-Syn amyloid aggregation. Although the Mn2+-induced condensates do not fuse, our results demonstrated that they could recruit soluble α-Syn monomers into the existing condensates. Furthermore, we observed that a manganese chelator reverses Mn2+-induced α-Syn aggregation during the phase transition stage. However, after maturation, α-Syn aggregation becomes irreversible. These findings demonstrate that Mn2+ facilitates α-Syn phase transition to accelerate the formation of α-Syn aggregates and provide new insights for targeting α-Syn phase separation in PD treatment.


Assuntos
Amiloide , Amiloidose , Manganês , Doença de Parkinson , alfa-Sinucleína , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Humanos , Corpos de Lewy/metabolismo , Manganês/metabolismo , Doença de Parkinson/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo
14.
Front Immunol ; 12: 778978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925354

RESUMO

Therapeutic monoclonal antibodies (mAbs) blocking immune checkpoints have been mainly used as monotherapy. Recently, combination therapy targeting multiple immune checkpoints has recently been explored to increase anti-cancer efficacy. Particularly, a single molecule targeting more than one checkpoints has been investigated. As dual blocking of PD-1/PD-L1 and VEGF/VEGFR has demonstrated synergism in anti-tumor activities, we developed a novel bispecific antibody, termed HB0025, which is formed via fusing the domain 2 of vascular endothelial growth factor receptor 1 (VEGFR1D2) and anti-PD-L1 mAb by using mAb-Trap technology. HB0025 almost completely retains the binding affinities and the biological activities in-vitro when compared with the parent anti-PD-L1 mAb or VEGFR1D2 fusion protein. Preclinical data demonstrated that HB0025 was more effective in inhibiting cancer growth than anti PD-L1 mAb or VEGFR1D2 fusion protein. Thus, our bispecific antibody may bring about greater clinical benefits and broader indications.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/uso terapêutico , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Neoplasias/patologia , Domínios Proteicos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Front Immunol ; 12: 771210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804061

RESUMO

CCR2 is predominantly expressed by monocytes/macrophages with strong proinflammatory functions, prompting the development of CCR2 antagonists to dampen unwanted immune responses in inflammatory and autoimmune diseases. Paradoxically, CCR2-expressing monocytes/macrophages, particularly in tumor microenvironments, can be strongly immunosuppressive. Thus, targeting the recruitment of immunosuppressive monocytes/macrophages to tumors by CCR2 antagonism has recently been investigated as a strategy to modify the tumor microenvironment and enhance anti-tumor immunity. We present here that beneficial effects of CCR2 antagonism in the tumor setting extend beyond blocking chemotaxis of suppressive myeloid cells. Signaling within the CCL2/CCR2 axis shows underappreciated effects on myeloid cell survival and function polarization. Apart from myeloid cells, T cells are also known to express CCR2. Nevertheless, tissue homing of Treg cells among T cell populations is preferentially affected by CCR2 deficiency. Further, CCR2 signaling also directly enhances Treg functional potency. Thus, although Tregs are not the sole type of T cells expressing CCR2, the net outcome of CCR2 antagonism in T cells favors the anti-tumor arm of immune responses. Finally, the CCL2/CCR2 axis directly contributes to survival/growth and invasion/metastasis of many types of tumors bearing CCR2. Together, CCR2 links to two main types of suppressive immune cells by multiple mechanisms. Such a CCR2-assoicated immunosuppressive network is further entangled with paracrine and autocrine CCR2 signaling of tumor cells. Strategies to target CCL2/CCR2 axis as cancer therapy in the view of three types of CCR2-expessing cells in tumor microenvironment are discussed.


Assuntos
Quimiocina CCL2/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Receptores CCR2/imunologia , Transdução de Sinais/imunologia , Animais , Quimiocina CCL2/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Imunológicos , Monócitos/imunologia , Monócitos/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores CCR2/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/imunologia
16.
PLoS Pathog ; 16(12): e1009119, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33290418

RESUMO

Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas , Imunidade Inata , Animais , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Macrófagos/microbiologia , Lipídeos de Membrana , Camundongos , Camundongos Endogâmicos C57BL
17.
Sci Adv ; 6(48)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33246952

RESUMO

Major histocompatibility complex (MHC)-unrestricted cytotoxic lymphocytes (CLs) such as natural killer (NK) cells can detect and destroy tumor and virus-infected cells resistant to T cell-mediated killing. Here, we performed genome-wide genetic screens to identify tumor-intrinsic genes regulating killing by MHC-unrestricted CLs. A group of genes identified in our screens encode enzymes for the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor, which is not involved in tumor response to T cell-mediated cytotoxicity. Another gene identified in the screens was PBRM1, which encodes a subunit of the PBAF form of the SWI/SNF chromatin-remodeling complex. PBRM1 mutations in tumor cells cause resistance to MHC-unrestricted killing, in contrast to their sensitizing effects on T cell-mediated killing. PBRM1 and the GPI biosynthetic pathway regulate the ligands of NK cell receptors in tumor cells and promote cytolytic granule secretion in CLs. The regulators identified in this work represent potential targets for cancer immunotherapy.


Assuntos
Citotoxicidade Imunológica , Neoplasias , Vias Biossintéticas , Proteínas de Ligação a DNA/genética , Glicosilfosfatidilinositóis , Antígenos de Histocompatibilidade , Humanos , Células Matadoras Naturais , Complexo Principal de Histocompatibilidade , Neoplasias/genética , Fatores de Transcrição/genética
18.
Cell Rep ; 29(13): 4583-4592.e3, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31875562

RESUMO

Intracellular vesicle fusion is mediated by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18 (SM) proteins. It is generally accepted that membrane fusion occurs when the vesicle and target membranes are brought into close proximity by SNAREs and SM proteins. In this work, we demonstrate that, for fusion to occur, membrane bilayers must be destabilized by a conserved membrane-embedded motif located at the juxtamembrane region of the vesicle-anchored v-SNARE. Comprised of basic and hydrophobic residues, the juxtamembrane motif perturbs the lipid bilayer structure and promotes SNARE-SM-mediated membrane fusion. The juxtamembrane motif can be functionally substituted with an unrelated membrane-disrupting peptide in the membrane fusion reaction. These findings establish the juxtamembrane motif of the v-SNARE as a membrane-destabilizing peptide. Requirement of membrane-destabilizing peptides is likely a common feature of biological membrane fusion.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Fusão de Membrana , Proteínas Munc18 , Proteínas SNARE/química , Vesículas Transportadoras/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Membrana Celular/metabolismo , Drosophila melanogaster , Humanos , Bicamadas Lipídicas/metabolismo , Camundongos , Modelos Moleculares , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Proteínas SNARE/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Vesículas Transportadoras/metabolismo , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Xenopus laevis
19.
Dev Cell ; 50(4): 436-446.e5, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31353312

RESUMO

Multimeric adaptors are broadly involved in vesicle-mediated membrane trafficking. AP2 adaptor, in particular, plays a central role in clathrin-mediated endocytosis (CME) by recruiting cargo and clathrin to endocytic sites. It is generally thought that trafficking adaptors such as AP2 adaptor assemble spontaneously. In this work, however, we discovered that AP2 adaptor assembly is an ordered process controlled by alpha and gamma adaptin binding protein (AAGAB), an uncharacterized factor identified in our genome-wide genetic screen of CME. AAGAB guides the sequential association of AP2 subunits and stabilizes assembly intermediates. Without the assistance of AAGAB, AP2 subunits fail to form the adaptor complex, leading to their degradation. The function of AAGAB is abrogated by a mutation that causes punctate palmoplantar keratoderma type 1 (PPKP1), a human skin disease. Since other multimeric trafficking adaptors operate in an analogous manner to AP2 adaptor, their assembly likely involves a similar regulatory mechanism.


Assuntos
Complexo 2 de Proteínas Adaptadoras/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Endocitose/genética , Sequência de Aminoácidos/genética , Membrana Celular/genética , Clatrina/genética , Humanos , Ceratodermia Palmar e Plantar/genética , Ceratodermia Palmar e Plantar/patologia , Ligação Proteica/genética , Transporte Proteico/genética , Proteólise
20.
J Biol Chem ; 293(47): 18309-18317, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30275014

RESUMO

Sec1/Munc18 (SM) proteins promote intracellular vesicle fusion by binding to N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). A key SNARE-binding mode of SM proteins involves the N-terminal peptide (N-peptide) motif of syntaxin, a SNARE subunit localized to the target membrane. In in vitro membrane fusion assays, inhibition of N-peptide motif binding previously has been shown to abrogate the stimulatory function of Munc18-1, a SM protein involved in synaptic exocytosis in neurons. The physiological role of the N-peptide-binding mode, however, remains unclear. In this work, we addressed this key question using a "clogged" Munc18-1 protein, in which an ectopic copy of the syntaxin N-peptide motif was directly fused to Munc18-1. We found that the ectopic N-peptide motif blocks the N-peptide-binding pocket of Munc18-1, preventing the latter from binding to the native N-peptide motif on syntaxin-1. In a reconstituted system, we observed that clogged Munc18-1 is defective in promoting SNARE zippering. When introduced into induced neuronal cells (iN cells) derived from human pluripotent stem cells, clogged Munc18-1 failed to mediate synaptic exocytosis. As a result, both spontaneous and evoked synaptic transmission was abolished. These genetic findings provide direct evidence for the crucial role of the N-peptide-binding mode of Munc18-1 in synaptic exocytosis. We suggest that clogged SM proteins will also be instrumental in defining the physiological roles of the N-peptide-binding mode in other vesicle-fusion pathways.


Assuntos
Exocitose , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Peptídeos/metabolismo , Sinapses/metabolismo , Motivos de Aminoácidos , Humanos , Proteínas Munc18/genética , Neurônios/química , Neurônios/metabolismo , Peptídeos/química , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Sinapses/química , Sinapses/genética , Transmissão Sináptica , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA