Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Signal ; 112: 110924, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838311

RESUMO

Clinical application of the widely used chemotherapeutic agent, doxorubicin (DOX), is limited by its cardiotoxicity. Mitochondrial dysfunction has been revealed as a crucial factor in DOX-induced cardiotoxicity. 7,8,3'-Trihydroxyflavone (THF) is a mimetic brain-derived neurotrophic factor with neuroprotective effects. However, the potential effects of THF on DOX-induced cardiomyocyte damage and mitochondrial disorders remain unclear. H9c2 cardiomyoblasts were exposed to DOX and/or THF at different concentrations. Cardiomyocyte injury was evaluated using lactate dehydrogenase (LDH) assay and Live/Dead cytotoxicity kit. Meanwhile, mitochondrial membrane potential (MMP), morphology, mitochondrial reactive oxygen species (mito-ROS) production, and the oxygen consumption rate of cardiomyocytes were measured. The protein levels of key mitochondria-related factors such as adenosine monophosphate-activated protein kinase (AMPK), mitofusin 2 (Mfn2), dynamin-related protein 1 (Drp1), and optic atrophy protein 1 (OPA1) were examined. We found that THF reduced LDH content and death ratio of DOX-treated cardiomyocytes in a concentration-dependent manner, while increasing MMP without significantly affecting the routine and maximum capacity of mitochondrial respiration. Mechanistically, THF increased the activity of Akt and protein levels of Mfn2 and heme oxygenase 1 (HO-1). Moreover, inhibition of Akt reversed the protective role of THF, increased mito-ROS levels, and repressed Mfn2 and HO-1 expression. Therefore, we conclude, THF relieves DOX-induced cardiotoxicity and improves mitochondrial function by activating Akt-mediated Mfn2 and HO-1 pathways. This finding provides promising therapeutic insights for DOX-induced cardiac dysfunction.


Assuntos
Cardiotoxicidade , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiotoxicidade/metabolismo , Transdução de Sinais , Doxorrubicina/toxicidade , Miócitos Cardíacos/metabolismo , Mitocôndrias/metabolismo , Apoptose , Estresse Oxidativo
2.
J Geriatr Cardiol ; 19(11): 853-866, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36561053

RESUMO

BACKGROUND: Pathological cardiac hypertrophy is a compensated response to various stimuli and is considered a key risk factor for heart failure. 7,8-Dihydroxyflavone (7,8-DHF) is a flavonoid derivative that acts as a small-molecule brain-derived neurotrophic factor mimetic. The present study aimed to explore the potential role of 7,8-DHF in cardiac hypertrophy. METHODS: Kunming mice and H9c2 cells were exposed to transverse aortic constriction or isoproterenol (ISO) with or without 7,8-DHF, respectively. F-actin staining was performed to calculate the cell area. Transcriptional levels of hypertrophic markers, including ANP, BNP, and ß-MHC, were detected. Echocardiography, hematoxylin-eosin staining, and transmission electron microscopy were used to examine the cardiac function, histology, and ultrastructure of ventricles. Protein levels of mitochondria-related factors, such as adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), were detected. RESULTS: 7,8-DHF inhibited compensated and decompensated cardiac hypertrophy, diminished the cross-sectional area, and alleviated the mitochondrial disorders of cardiomyocytes. Meanwhile, 7,8-DHF reduced the cell size and repressed the mRNA levels of the hypertrophic markers of ISO-treated cardiomyocytes. In addition, 7,8-DHF activated AMPK and PGC-1α signals without affecting the protein levels of mitochondrial dynamics-related molecules. The effects of 7,8-DHF were eliminanted by Compound C, an AMPK inhibitor. CONCLUSIONS: These findings suggest that 7,8-DHF inhibited cardiac hypertrophy and mitochondrial dysfunction by activating AMPK signaling, providing a potential agent for the treatment of pathological cardiac hypertrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA