Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38473566

RESUMO

Carbon dioxide corrosion presents a significant challenge in the oil and gas field. This study simulates the corrosive environment characteristics of oil and gas fields to investigate the corrosion inhibition properties of three triphenylmethane dyes. The inhibitive performance and mechanisms of these dyes were analyzed through weight loss and electrochemical testing, revealing that crystal violet (CV) exhibited a superior inhibition effectiveness over malachite green (MG) and Fuchsine basic (FB). At a concentration of 150 ppm in a CO2-saturated 5% NaCl solution at 25 °C, CV achieved an impressive maximum inhibition efficiency of 94.89%. With the increase in temperature, the corrosion rate slightly decreased, and the corrosion rate was 92.94% at 60 °C. The investigated CV acted as a mixed-type corrosion inhibitor and its protection obeyed the Langmuir adsorption isotherm. The corrosion morphology was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and confocal laser scanning microscopy (CLMS). Quantum chemical calculations and molecular dynamics simulations were employed to validate the corrosion inhibition mechanisms, providing guidance for the further application of these dyes in corrosion control.

2.
Cell Mol Life Sci ; 81(1): 123, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459149

RESUMO

Maintaining genomic stability is a prerequisite for proliferating NPCs to ensure genetic fidelity. Though histone arginine methylation has been shown to play important roles in safeguarding genomic stability, the underlying mechanism during brain development is not fully understood. Protein arginine N-methyltransferase 5 (PRMT5) is a type II protein arginine methyltransferase that plays a role in transcriptional regulation. Here, we identify PRMT5 as a key regulator of DNA repair in response to double-strand breaks (DSBs) during NPC proliferation. Prmt5F/F; Emx1-Cre (cKO-Emx1) mice show a distinctive microcephaly phenotype, with partial loss of the dorsal medial cerebral cortex and complete loss of the corpus callosum and hippocampus. This phenotype is resulted from DSBs accumulation in the medial dorsal cortex followed by cell apoptosis. Both RNA sequencing and in vitro DNA repair analyses reveal that PRMT5 is required for DNA homologous recombination (HR) repair. PRMT5 specifically catalyzes H3R2me2s in proliferating NPCs in the developing mouse brain to enhance HR-related gene expression during DNA repair. Finally, overexpression of BRCA1 significantly rescues DSBs accumulation and cell apoptosis in PRMT5-deficient NSCs. Taken together, our results show that PRMT5 maintains genomic stability by regulating histone arginine methylation in proliferating NPCs.


Assuntos
Células-Tronco Neurais , Reparo de DNA por Recombinação , Animais , Camundongos , Arginina/metabolismo , Reparo do DNA , Instabilidade Genômica , Genômica , Histonas/genética , Histonas/metabolismo , Células-Tronco Neurais/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
3.
J Hazard Mater ; 444(Pt A): 130394, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403446

RESUMO

As two important components of dissolved organic matter (DOM), dissolved black carbon (DBC) and humic acid (HA) possess different chemical and structural properties, which might influence their activities like metal complexation and mediating electron transfer. In this study, a series of coprecipitates of iron oxides (FeOx) and DOM (HA or DBC) having different C/Fe molar ratios (0.2-3.0) was prepared under ambient conditions, which exhibited excellent catalytic efficiencies upon Fenton-like degradation of norfloxacin (NOR). Pseudo-first-order rate constant of NOR oxidation catalyzed by DBC-FeOx (C/Fe=3.0, 1.13 h-1) was 30.5, 4.3-14.2, and 1.3-15.7 folds higher than those mediated by FeOx alone, HA-FeOx and DBC-FeOx coprecipitates having C/Fe molar ratios of 0.2 and 1.6, respectively. Due to the higher concentrations of surface-bound Fe(III)/Fe(II) in the DBC-FeOx mediated systems, improved Fe(III)/Fe(II) cycling rates, •OH accumulation and NOR degradation were observed as compared with those of counterpart systems mediated by HA-FeOx. Besides functioning in Fe-C complexation to accelerate FeOOH cleavage, carbonyl/carboxyl groups of the coprecipitates also serve as electron shuttles, both of which improved Fe(III)/Fe(II) cycling and •OH production. Our findings emphasized the influence of DOM source and compositions on Fe(III)/Fe(II) cycling and provided a facile approach of preparing Fe-C catalyst for contaminants elimination.


Assuntos
Compostos Férricos , Norfloxacino , Matéria Orgânica Dissolvida , Fuligem , Compostos Ferrosos , Óxidos , Ferro
4.
Int J Mol Sci ; 22(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063230

RESUMO

It has been reported that Netrin-1 is involved in neuroprotection following injury to the central nervous system. However, the minimal functional domain of Netrin-1 which can preserve the neuroprotection but avoid the major side effects of Netrin remains elusive. Here, we investigated the neuroprotective effect of a peptide E1 derived from Netrin-1's EGF3 domain (residues 407-422). We found that it interacts with deleted colorectal carcinoma (DCC) to activate focal adhesion kinase phosphorylation exhibiting neuroprotection. The administration of the peptide E1 was able to improve functional recovery through reduced apoptosis in an experimental murine model of intracerebral hemorrhage (ICH). In summary, we reveal a functional sequence of Netrin-1 that is involved in the recovery process after ICH and identify a candidate peptide for the treatment of ICH.


Assuntos
Morte Celular/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Netrina-1/metabolismo , Netrina-1/farmacologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose , Comportamento Animal , Sobrevivência Celular , Receptor DCC/genética , Modelos Animais de Doenças , Proteína-Tirosina Quinases de Adesão Focal , Células HEK293 , Humanos , Camundongos , Netrina-1/genética
5.
J Neurosci ; 40(48): 9169-9185, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33097641

RESUMO

Myosin X (Myo X) transports cargos to the tips of filopodia for cell adhesion, migration, and neuronal axon guidance. Deleted in Colorectal Cancer (DCC) is one of the Myo X cargos that is essential for Netrin-1-regulated axon pathfinding. The function of Myo X in axon development in vivo and the underlying mechanisms remain elusive. Here, we provide evidence for the role of Myo X in Netrin-1-DCC-regulated axon development in developing mouse neocortex. The knockout (KO) or knockdown (KD) of Myo X in cortical neurons of embryonic mouse brain impairs axon initiation and contralateral branching/targeting. Similar axon deficits are detected in Netrin-1-KO or DCC-KD cortical neurons. Further proteomic analysis of Myo X binding proteins identifies KIF13B (a kinesin family motor protein). The Myo X interaction with KIF13B is induced by Netrin-1. Netrin-1 promotes anterograde transportation of Myo X into axons in a KIF13B-dependent manner. KIF13B-KD cortical neurons exhibit similar axon deficits. Together, these results reveal Myo X-KIF13B as a critical pathway for Netrin-1-promoted axon initiation and branching/targeting.SIGNIFICANCE STATEMENT Netrin-1 increases Myosin X (Myo X) interaction with KIF13B, and thus promotes axonal delivery of Myo X and axon initiation and contralateral branching in developing cerebral neurons, revealing unrecognized functions and mechanisms underlying Netrin-1 regulation of axon development.


Assuntos
Axônios/fisiologia , Cinesinas/fisiologia , Proteínas de Membrana/fisiologia , Miosinas/fisiologia , Netrina-1/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Receptor DCC/genética , Receptor DCC/fisiologia , Feminino , Cinesinas/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosinas/genética , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Netrina-1/genética , Gravidez
6.
Mater Sci Eng C Mater Biol Appl ; 111: 110855, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279770

RESUMO

Bacterial adhesion and colonization on material surfaces have attracted great attention due to their potential threat to human health. Combining bactericidal and antifouling functions has been confirmed as an optimal strategy to prevent microbial infection. In this work, biodegradable electrospun polyvinyl alcohol (PVA) nanofibers were chosen due to its high specific area and abundant reactive hydroxyl groups. A quaternary ammonium salt (IQAS) and zwitterionic sulfopropylbetaine (ISB), both containing isocyanate (NCO) groups, were chemically bonded to the PVA nanofiber surface via a coupling reaction between the OH groups of the PVA nanofibers and the NCO groups of IQAS or ISB. The results indicated that the antimicrobial rates of PVA nanofibers modified by IQAS (0.5%) reached 99.9% against both gram-positive Staphylococcus aureus (S. aureus, ATCC 6538) and gram-negative Escherichia coli (E. coli, ATCC 25922). Additionally, the live/dead staining and cytotoxicity test indicated that the dual functional IQAS/ISB/PVA nanofibers exhibited excellent bactericidal and antifouling activities with low cytotoxicity. This work may provide practical guidelines to fabricate bactericidal and antifouling materials for healthcare applications, including but not limited to wound dressings, textile, food packaging and air filtration.


Assuntos
Antibacterianos/farmacologia , Betaína/farmacologia , Incrustação Biológica , Nanofibras/química , Álcool de Polivinil/farmacologia , Compostos de Amônio Quaternário/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Álcool de Polivinil/química , Espectroscopia de Prótons por Ressonância Magnética , Resistência à Tração
7.
Development ; 147(6)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32098764

RESUMO

Neocortex development during embryonic stages requires the precise control of mRNA metabolism. Human antigen R (HuR) is a well-studied mRNA-binding protein that regulates mRNA metabolism, and it is highly expressed in the neocortex during developmental stages. Deletion of HuR does not impair neural progenitor cell proliferation or differentiation, but it disturbs the laminar structure of the neocortex. We report that HuR is expressed in postmitotic projection neurons during mouse brain development. Specifically, depletion of HuR in these neurons led to a mislocalization of CDP+ neurons in deeper layers of the cortex. Time-lapse microscopy showed that HuR was required for the promotion of cell motility in migrating neurons. PCR array identified profilin 1 (Pfn1) mRNA as a major binding partner of HuR in neurons. HuR positively mediated the stability of Pfn1 mRNA and influenced actin polymerization. Overexpression of Pfn1 successfully rescued the migration defects of HuR-deleted neurons. Our data reveal a post-transcriptional mechanism that maintains actin dynamics during neuronal migration.


Assuntos
Movimento Celular , Proteína Semelhante a ELAV 1/fisiologia , Neurônios/fisiologia , RNA Mensageiro/metabolismo , Animais , Padronização Corporal/genética , Movimento Celular/genética , Células Cultivadas , Embrião de Mamíferos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Gravidez , Profilinas/fisiologia , Processamento Pós-Transcricional do RNA/genética
8.
Cereb Cortex ; 29(6): 2737-2747, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30843060

RESUMO

Chronic stress has been observed to increase the risk of developing depression and induce neuronal alterations of synaptic plasticity, yet the underlying molecular mechanisms remain unclear. Here, we found that the ubiquitously expressed RNA-binding protein HuR was up-regulated in the medial prefrontal cortex (mPFC) of mice following chronic stress. In adult mice, AAV-Cre-mediated knockout of HuR in the mPFC prevented anxiety-like and depression-like behaviors induced by chronic stress. HuR was also required for the stress-induced dendritic spine loss and synaptic transmission deficits. Moreover, HuRflox/flox;Nex-Cre mice, which induce HuR loss of function from embryonic development, exhibited enhanced synaptic functions. Notably, we ascertained RhoA signaling to be regulated by HuR and involved in the modulation of structural synaptic plasticity in response to chronic stress. Our results demonstrate HuR is a critical modulator for the regulation of stress-induced synaptic plasticity alterations and depression, providing a potential therapeutic target for the treatment of depressive disorders.


Assuntos
Depressão/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/metabolismo , Animais , Depressão/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Restrição Física , Estresse Psicológico/complicações
9.
J Bone Miner Res ; 34(5): 939-954, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30645777

RESUMO

Normal bone mass is maintained by balanced bone formation and resorption. Myosin X (Myo10), an unconventional "myosin tail homology 4-band 4.1, ezrin, radixin, moesin" (MyTH4-FERM) domain containing myosin, is implicated in regulating osteoclast (OC) adhesion, podosome positioning, and differentiation in vitro. However, evidence is lacking for Myo10 in vivo function. Here we show that mice with Myo10 loss of function, Myo10m/m , exhibit osteoporotic deficits, which are likely due to the increased OC genesis and bone resorption because bone formation is unchanged. Similar deficits are detected in OC-selective Myo10 conditional knockout (cko) mice, indicating a cell autonomous function of Myo10. Further mechanistic studies suggest that Unc-5 Netrin receptor B (Unc5b) protein levels, in particular its cell surface level, are higher in the mutant OCs, but lower in RAW264.7 cells or HEK293 cells expressing Myo10. Suppressing Unc5b expression in bone marrow macrophages (BMMs) from Myo10m/m mice by infection with lentivirus of Unc5b shRNA markedly impaired RANKL-induced OC genesis. Netrin-1, a ligand of Unc5b, increased RANKL-induced OC formation in BMMs from both wild-type and Myo10m/m mice. Taken together, these results suggest that Myo10 plays a negative role in OC formation, likely by inhibiting Unc5b cell-surface targeting, and suppressing Netrin-1 promoted OC genesis. © 2019 American Society for Bone and Mineral Research.


Assuntos
Miosinas/metabolismo , Receptores de Netrina/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Acebutolol , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Miosinas/deficiência , Receptores de Netrina/genética , Netrina-1/genética , Netrina-1/metabolismo , Osteoclastos/patologia , Osteoporose/genética , Osteoporose/patologia , Ligante RANK/genética , Ligante RANK/metabolismo , Células RAW 264.7
10.
Cell Rep ; 22(13): 3598-3611, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590626

RESUMO

Newborn neurons undergo inside-out migration to their final destinations during neocortical development. Reelin-induced tyrosine phosphorylation of disabled 1 (Dab1) is a critical mechanism controlling cortical neuron migration. However, the roles of Reelin-independent phosphorylation of Dab1 remain unclear. Here, we report that deleted in colorectal carcinoma (DCC) interacts with Dab1 via its P3 domain. Netrin 1, a DCC ligand, induces Dab1 phosphorylation at Y220 and Y232. Interestingly, knockdown of DCC or truncation of its P3 domain dramatically delays neuronal migration and impairs the multipolar-to-bipolar transition of migrating neurons. Notably, the migration delay and morphological transition defects are rescued by the expression of a phospho-mimetic Dab1 or a constitutively active form of Fyn proto-oncogene (Fyn), a member of the Src-family tyrosine kinases that effectively induces Dab1 phosphorylation. Collectively, these findings illustrate a DCC-Dab1 interaction that ensures proper neuronal migration during neocortical development.


Assuntos
Receptor DCC/metabolismo , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Movimento Celular/fisiologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/metabolismo , Netrina-1/metabolismo , Fosforilação , Domínios Proteicos , Proto-Oncogene Mas , Proteína Reelina
11.
J Cell Mol Med ; 22(6): 3259-3263, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575613

RESUMO

Single-chain variable fragment (scFv) antibodies are the smallest immunoglobulins with high antigen-binding affinity. We have previously reported that fibroblast growth factor 1 played pivotal roles in cancer development and generated a mouse scFv (mscFv1C9) could effectively prohibit cancer cell proliferation in vitro and in vivo. Here, we further humanized this scFv (hscFv1C9) using a structure-guided complementarity determining region grafting strategy. The purified hscFv1C9 maintained similar antigen-binding affinity and specificity as mscFv1C9, and it was capable of inhibiting growth of different tumours in vitro and in vivo. These data strongly suggested that hscFv1C9 has antitumour potentials.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fator 1 de Crescimento de Fibroblastos/antagonistas & inibidores , Glioma/tratamento farmacológico , Anticorpos de Cadeia Única/farmacologia , Sequência de Aminoácidos/genética , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/imunologia , Glioma/genética , Glioma/patologia , Xenoenxertos , Humanos , Camundongos , Anticorpos de Cadeia Única/imunologia
12.
J Neurochem ; 135(2): 261-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178610

RESUMO

Stabilized microtubules are required for neuronal morphogenesis and migration. However, the underlying mechanism is not fully understood. In this study, we demonstrate that myosin X (Myo10), which is composed of full-length myosin X (fMyo10) and headless myosin X (hMyo10), is important for axon development. fMyo10 is involved in axon elongation, whereas hMyo10 is critical for Tau-1 positive axon formation through stabilizing microtubules. Furthermore, in vivo studies reveal that hMyo10-mediated microtubule stability has a profound effect on both neuronal migration and dendritic arborization in the mammalian cerebral cortex. Taken together, our findings suggest that hMyo10 is involved in neuronal development both in vitro and in vivo by regulating microtubule stability.


Assuntos
Microtúbulos/fisiologia , Miosinas/fisiologia , Neurônios/fisiologia , Animais , Axônios/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Dendritos/fisiologia , Eletroporação , Feminino , Camundongos , Neurogênese/genética , Gravidez , Transfecção
13.
In Vitro Cell Dev Biol Anim ; 51(4): 400-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25491426

RESUMO

Myosin X (Myo10), an untraditional member of myosin superfamily, is characterized as an actin-based molecular motor, which plays a critical role in diverse cellular motile events. Previous research by our group has found that Myo10 influenced neuronal radial migration in developing neocortex, but the underlying mechanism is still largely unknown. In this study, we found that knockdown of endogenous Myo10 in a normal gonadotropin-releasing hormone (GnRH) neuronal cell line transfected with the large T antigen (NLT) induced the impairment of cell motility and orientation. In the wound healing assay, with the Golgi complex staining to display cell polarity, Myo10 knockdown cells were randomly oriented compared to the control. Furthermore, suppressing the expression of Myo10 decreased the ability of cell-matrix adhesion. N-cadherin, a calcium-dependent classical cell adhesion molecule, rescued the migration deficiency caused by Myo10 knockdown in cell aggregates and collagen gel assay. These results suggest that Myo10 is required for neurogenic cell migration through N-cadherin mediated cell adhesion.


Assuntos
Miosinas/metabolismo , Neurônios/citologia , Animais , Caderinas/metabolismo , Adesão Celular/genética , Linhagem Celular , Movimento Celular/genética , Técnicas de Silenciamento de Genes , Camundongos , Miosinas/genética , Neurônios/fisiologia
14.
Cereb Cortex ; 24(5): 1259-68, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23300110

RESUMO

During embryonic development of the mammalian cerebral cortex, postmitotic cortical neurons migrate radially from the ventricular zone to the cortical plate. Proper migration involves the correct orientation of migrating neurons and the transition from a multipolar to a mature bipolar morphology. Herein, we report that the 2 isoforms of Myosin-10 (Myo10) play distinct roles in the regulation of radial migration in the mouse cortex. We show that the full-length Myo10 (fMyo10) isoform is located in deeper layers of the cortex and is involved in establishing proper migration orientation. We also demonstrate that fMyo10-dependent orientation of radial migration is mediated at least in part by the netrin-1 receptor deleted in colorectal cancer. Moreover, we show that the headless Myo10 (hMyo10) isoform is required for the transition from multipolar to bipolar morphologies in the intermediate zone. Our study reveals divergent functions for the 2 Myo10 isoforms in controlling both the direction of migration and neuronal morphogenesis during radial cortical neuronal migration.


Assuntos
Movimento Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Miosinas/metabolismo , Neurônios/fisiologia , Análise de Variância , Animais , Células Cultivadas , Receptor DCC , Eletroporação , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Antígeno Ki-67/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Miosinas/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Isoformas de Proteínas/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-23742061

RESUMO

Myosin X (Myo10) is an unconventional myosin associated with filopodia motility. Recent studies show that in addition to full-length Myo10, brain expresses a shorter form of Myo10 that lacks a myosin motor domain named headless Myo10. Herein, we analyzed and cloned 2-kb of the 5'-upstream sequences of mouse full-length Myo10 (fMyo10) and headless Myo10 (hMyo10) to understand the transcriptional regulation of the Myo10 gene. The putative transcription factor binding sites and CpG island were analyzed by a bioinformatic approach. Luciferase reporter assays showed that the 2-kb of 5'-upstream sequences of both fMyo10 and hMyo10 had promoter activities.


Assuntos
Miosinas/genética , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Clonagem Molecular , Ilhas de CpG , Camundongos , Ativação Transcricional
16.
PLoS One ; 7(5): e36988, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590642

RESUMO

Myosin X (Myo10) with pleckstrin homology (PH) domains is a motor protein acting in filopodium initiation and extension. However, its potential role has not been fully understood, especially in neuronal development. In the present study the preferential accumulation of Myo10 in axon tips has been revealed in primary culture of hippocampal neurons with the aid of immunofluorescence from anti-Myo10 antibody in combination with anti-Tuj1 antibody as specific marker. Knocking down Myo10 gene transcription impaired outgrowth of axon with loss of Tau-1-positive phenotype. Interestingly, inhibition of actin polymerization by cytochalasin D rescued the defect of axon outgrowth. Furthermore, ectopic expression of Myo10 with enhanced green fluorescence protein (EGFP) labeled Myo10 mutants induced multiple axon-like neurites in a motor-independent way. Mechanism studies demonstrated that the recruitment of Myo10 through its PH domain to phosphatidylinositol (3,4,5)-trisphosphate (PtdIns (3,4,5) P3) was essential for axon formation. In addition, in vivo studies confirmed that Myo10 was required for neuronal morphological transition during radial neuronal migration in the developmental neocortex.


Assuntos
Axônios/metabolismo , Movimento Celular/fisiologia , Hipocampo/embriologia , Miosinas/biossíntese , Neocórtex/embriologia , Proteínas do Tecido Nervoso/biossíntese , Fosfatos de Fosfatidilinositol/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citocalasina D/farmacologia , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Mutação , Miosinas/genética , Neocórtex/citologia , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia
17.
Cell Biol Int ; 33(5): 578-85, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19254772

RESUMO

Myosin X (Myo X), an unconventional myosin with a tail homology 4-band 4.1/ezrin/radixin/moesin (MyTH4-FERM) tail, is expressed ubiquitously in various mammalian tissues. In addition to the full-length Myo X (Myo X FL), a headless form is synthesized in the brain. So far, little is known about the function of this motor-less Myo X. In this study, the role of the headless Myo X was investigated in immortalized gonadotropin-releasing hormone (GnRH) neuronal cells, NLT. NLT cells overexpressing the headless Myo X formed fewer focal adhesions and spread more slowly than the wild-type NLT cells and GFP-expressing NLT cells. In chemomigration assays, the NLT cells overexpressing the headless Myo X migrated shorter distances and had fewer migratory cells compared with the control NLT cells.


Assuntos
Movimento Celular/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Miosinas/metabolismo , Animais , Adesão Celular/fisiologia , Linhagem Celular , Camundongos , Miosinas/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA