Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 360(1-2): 363-71, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21959973

RESUMO

Tissue kallikrein 1 cleaves kininogen substrate to produce vasoactive kinin peptides that have been implicated in inhibiting neointimal hyperplasia in rat carotid arteries after balloon injury. However, its effects on the proliferation, cell cycle and its mechanisms, for example, cyclin-dependent kinase inhibitors, p27(Kip1) and p2l(Cip1) in vascular biology are poorly understood. The objective of this study was to explore the effects of human tissue kallikrein 1 (hTK1) mediated by recombinant adenovirus (Ad-hTK1) on proliferation and cell cycle of vascular smooth muscle cells (VSMCs) derived from spontaneously hypertensive rats induced by platelet-derived growth factor-BB (PDGF-BB) in vitro. The results showed that, within a given multiplicity of infection (MOI) and time, the hTK1 gene delivery inhibited PDGF-BB-stimulating VSMCs growth in a concentration-dependent (20-100 MOI) and time-dependent (2-5 days) manner by cell counting, with a peak inhibition rate at 36.3% at 72 h (P < 0.01). In addition, hTK1 gene delivery significantly suppressed PDGF-BB-induced proliferation of VSMCs by methyl thiazolyl tetrazoliuin assay, and decreased the percentage of cells in the S phase and in DNA synthesis by flow cytometry, with a peak inhibition rate at 30.2 and 36.4%, respectively (P < 0.01). Western blot assay showed that the protein levels of p27(Kip1) and p2l(Cip1) in cells infected with Ad-hTK1 were much more abundant than those in cells only induced by PDGF-BB, with up-modulating rates at 51.8 and 58.7%, respectively (P < 0.001). We also observed that the effects of hTK1 gene delivery in inhibiting VSMCs proliferation, arresting cell cycling in G(0)/G(1) phase and up-regulating the expression of p27(Kip1) and p2l(Cip1) could be blocked by icatibant (Hoe 140), a specific bradykinin B(2) receptor antagonist. Taken together, these results demonstrated that hTK1 overexpressed by recombinant adenovirus potently inhibits VSMCs proliferation that is required for neointimal hyperplasia and restenosis, and may activate p27(Kip1) and p2l(Cip1) signaling pathways via bradykinin B(2) receptor.


Assuntos
Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Mitógenos/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Calicreínas Teciduais/genética , Animais , Becaplermina , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Pontos de Checagem da Fase G1 do Ciclo Celular , Expressão Gênica , Humanos , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Calicreínas Teciduais/metabolismo , Regulação para Cima
2.
Zhonghua Xin Xue Guan Bing Za Zhi ; 38(8): 739-44, 2010 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-21055144

RESUMO

OBJECTIVE: Tissue kallikrein cleaves kininogen substrate to produce vasoactive kinin peptides that have been implicated in the proliferation of vascular smooth muscle cells. We investigated the effects of adenovirus-mediated human tissue kallikrein (Ad-hKLK1) gene delivery on the proliferation of vascular smooth muscle cells of SHR (VSMCs(SHR)) induced by platelet derived growth factor-BB (PDGF-BB). METHODS: Primary VSMCs(SHR) were isolated and cultured from thoracic aorta of male SHR. The VSMCs(SHR) proliferation induced by PDGF-BB was accessed by cell counting and methyl thiazolyl tetrazolium (MTT). Western blot was used to determine the protein expression of hKLK1, the cycle-independent kinase inhibitors p27(Kip1) and p21(Cip1). The mRNA expressions of bradykinin B1 receptor and B2 receptor were detected by RT-PCR in VSMCs(SHR). RESULTS: Proliferation of VSMCs(SHR) induced by PDGF-BB was significantly inhibited post transfection of Ad-hKLK1 (20-100 MOI) in a MOI-dependent manner. The peak inhibition titer of Ad-hKLK1 was 100 MOI with peak inhibition rate of 39.3% (cell counting, n = 3, P < 0.01), 30.2% (MTT, n = 3, P < 0.01) and 36.4% (peak stunning rate of cell-cycle in phase G(0)/G(1)). The inhibitory effects of proliferation and cell-cycle caused by hKLK1 gene delivery could be abolished by Hoe140, a bradykinin B2 receptor antagonist. The protein expression of p27(Kip1) and p21(Cip1) increased significantly after the hKLK1 gene delivery, whereas Hoe140 nearly completely blocked these effects (n = 3, P < 0.001, respectively). PDGF-BB also significantly upregulated the mRNA expression of B2 receptor but not B1 receptor in VSMCs(SHR). CONCLUSION: The hKLK1 gene delivery could inhibit PDGF-BB induced proliferation in VSMCs(SHR) through Bradykinin B2 receptor and up-regulate expression of p27(Kip1) and p2l(Cip1).


Assuntos
Proliferação de Células/efeitos dos fármacos , Calicreínas/genética , Calicreínas/farmacologia , Músculo Liso Vascular/citologia , Animais , Divisão Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Recombinação Genética
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 30(4): 746-9, 2010 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-20423841

RESUMO

OBJECTIVE: To investigate the effects of adenovirus-mediated human tissue kallikrein (Ad-hKLK1) gene transfer on platelet-derived growth factor-BB (PDGF-BB)-induced migration of vascular smooth muscle cells from spontaneously hypertensive rats (VSMC(SHR)). METHODS: A bicistronic recombinant adenovirus vector (Ad-hKLK1) carrying the target hKLK1 gene and the reporter gene EGFP was constructed. VSMCs isolated from the thoracic aorta of male SHR were passaged, and the quiescent VSMC(SHR) in passages 3-6 seeded in 6-well plates were treated with Ad-hKLK1 and control virus. Human PDGF-BB or icatibant Hoe140, a BK B2 antagonistat, was used as the chemoattractant and placed in the bottom chamber of the Boyden chamber. The mRNA expressions of bradykinin B1 receptor and B2 receptor were detected by RT-PCR in VSMC(SHR). RESULTS: hKLK1 gene transfer significantly inhibited PDGF-BB-induced migration of VSMC(SHR), with the peak inhibition rate of 34.6% (P<0.001). PDGF-BB significantly increased the mRNA expression of B2 receptor but not B1 receptor in VSMC(SHR). CONCLUSIONS: hKLK1 gene transfer can inhibit the migration of VSMC(SHR) induced by PDGF-BB, and the inhibitory effects may be not mediated by bradykinin B2 receptor.


Assuntos
Movimento Celular/genética , Técnicas de Transferência de Genes , Músculo Liso Vascular/citologia , Calicreínas Teciduais/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Aorta Torácica/citologia , Becaplermina , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Hipertensão/patologia , Masculino , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-sis , Ratos , Ratos Endogâmicos SHR , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Calicreínas Teciduais/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA