Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Bioresour Technol ; 396: 130421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320713

RESUMO

Large quantities of greenhouse gases (GHGs) are emitted into the atmosphere during wastewater treatment. In this study, GHG and microbial samples were collected from four wastewater treatment plants (WWTPs), and their differences and relationships were assessed. The study showed that, compared with conventionally constructed WWTPs, well-established gas collection systems in underground WWTPs facilitate comprehensive collection and accurate accounting of GHGs. In aboveground WWTPs, capped anoxic ponds promote methane production releasing it at 2-8 times the rate of uncapped emissions, in contrast to nitrous oxide emissions. Moreover, a stable subsurface environment allows for smaller fluctuations in daily GHG emissions and higher microbial diversity and abundance. This study highlights differences in GHG emission fluxes and microbial communities in differently constructed WWTPs, which are useful for control and accurate accounting of GHG emissions.


Assuntos
Gases de Efeito Estufa , Microbiota , Purificação da Água , Gases de Efeito Estufa/análise , Águas Residuárias , Metano/análise
2.
Proc Natl Acad Sci U S A ; 119(20): e2115354119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35549551

RESUMO

Myxoma virus (MYXV) causes localized cutaneous fibromas in its natural hosts, tapeti and brush rabbits; however, in the European rabbit, MYXV causes the lethal disease myxomatosis. Currently, the molecular mechanisms underlying this increased virulence after cross-species transmission are poorly understood. In this study, we investigated the interaction between MYXV M156 and the host protein kinase R (PKR) to determine their crosstalk with the proinflammatory nuclear factor kappa B (NF-κB) pathway. Our results demonstrated that MYXV M156 inhibits brush rabbit PKR (bPKR) more strongly than European rabbit PKR (ePKR). This moderate ePKR inhibition could be improved by hyperactive M156 mutants. We hypothesized that the moderate inhibition of ePKR by M156 might incompletely suppress the signal transduction pathways modulated by PKR, such as the NF-κB pathway. Therefore, we analyzed NF-κB pathway activation with a luciferase-based promoter assay. The moderate inhibition of ePKR resulted in significantly higher NF-κB­dependent reporter activity than complete inhibition of bPKR. We also found a stronger induction of the NF-κB target genes TNFα and IL-6 in ePKR-expressing cells than in bPKR-expressing cells in response to M156 in both transfection and infections assays. Furthermore, a hyperactive M156 mutant did not cause ePKR-dependent NF-κB activation. These observations indicate that M156 is maladapted for ePKR inhibition, only incompletely blocking translation in these hosts, resulting in preferential depletion of short­half-life proteins, such as the NF-κB inhibitor IκBα. We speculate that this functional activation of NF-κB induced by the intermediate inhibition of ePKR by M156 may contribute to the increased virulence of MYXV in European rabbits.


Assuntos
Interações Hospedeiro-Patógeno , Myxoma virus , Mixomatose Infecciosa , NF-kappa B , Coelhos , eIF-2 Quinase , Animais , Redes e Vias Metabólicas , Myxoma virus/genética , Myxoma virus/patogenicidade , Mixomatose Infecciosa/metabolismo , Mixomatose Infecciosa/virologia , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Coelhos/virologia , eIF-2 Quinase/metabolismo
3.
Artif Cells Nanomed Biotechnol ; 46(sup2): 912-920, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774753

RESUMO

Hemoperfusion using metal ion affinity adsorbent is a promising method to remove human testosterone in plasma. Due to the leakage of metal ion from the adsorbents, there is no metal ion affinity adsorbent for hemoperfusion. In this study, chitosan was used to coat the adsorbent for preventing the leakage of Zn2+ loaded. Meanwhile, freeze-drying method was used to enhance adsorption capacity of Zn2+-loaded cellulose beads for testosterone. The results indicate that after the adsorbent was coated by 0.02% chitosan solution, the highest adsorption percentage reached 48%, during adsorption, the Zn2+ concentration in plasma did not increase; the adsorption capacity of the adsorbent can be significantly enhanced by freeze-drying. The results may be caused by porosity of the adsorbent enlarged via freeze-drying and improved stability by coating with chitosan. In addition, the adsorbent shows better selectivity and storage stability and could be a potential adsorbent to treat prostate cancer.


Assuntos
Celulose/química , Quitosana/química , Liofilização , Hemoperfusão/métodos , Microesferas , Testosterona/isolamento & purificação , Zinco/química , Adsorção , Estabilidade de Medicamentos , Humanos , Testosterona/sangue , Testosterona/química , Zinco/sangue
4.
Biochem J ; 474(12): 2051-2065, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487378

RESUMO

TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)-(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK-TBK1-IKKε-IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Cisteína Endopeptidases/metabolismo , Vírus da Encefalomiocardite/enzimologia , Quinase I-kappa B/antagonistas & inibidores , Fator Regulador 3 de Interferon/antagonistas & inibidores , Interferon Tipo I/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteases Virais 3C , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cães , Deleção de Genes , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Mesocricetus , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
5.
J Biol Chem ; 290(46): 27618-32, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26363073

RESUMO

TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Encefalomiocardite/enzimologia , NF-kappa B/metabolismo , Proteólise , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Virais/metabolismo , Proteases Virais 3C , Sequência de Aminoácidos , Cisteína Endopeptidases/genética , Equartevirus/enzimologia , Vírus da Febre Aftosa/enzimologia , Células HEK293 , Humanos , Dados de Sequência Molecular , Vírus da Síndrome Respiratória e Reprodutiva Suína/enzimologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Proteínas Virais/genética
6.
J Chromatogr A ; 1356: 221-9, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-24997514

RESUMO

For the expanded application area, fast trace analysis of certain high boiling point (i.e., 150-250 °C) volatile organic compounds (HVOCs) in water, a large volume-direct aqueous injection-gas chromatography (LV-DAI-GC) method was optimized for the following parameters: packed sorbent for sample on-line pretreatment, inlet temperature and detectors configuration. Using the composite packed sorbent self-prepared with lithium chloride and a type of diatomite, the method enabled safe injection of an approximately 50-100 µL sample at an inlet temperature of 150 °C in the splitless mode and separated HVOCs from water matrix in 2 min. Coupled with a flame ionization detector (FID), an electron capture detector (ECD) and a flame photometric detector (FPD), the method could simultaneously quantify 27 HVOCs that belong to seven subclasses (i.e., halogenated aliphatic hydrocarbons, chlorobenzenes, nitrobenzenes, anilines, phenols, polycyclic aromatic hydrocarbons and organic sulfides) in 26 min. Injecting a 50 µL sample without any enrichment step, such as cryotrap focusing, the limits of quantification (LOQs) for the 27 HVOCs was 0.01-3 µg/L. Replicate analyses of the 27 HVOCs spiked source and river water samples exhibited good precision (relative standard deviations ≤ 11.3%) and accuracy (relative errors ≤ 17.6%). The optimized LV-DAI-GC was robust and applicable for fast determination and automated continuous monitoring of HVOCs in surface water.


Assuntos
Fenóis/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Água/análise , Adsorção , Baías , Cromatografia Gasosa/métodos , Limite de Detecção , Cloreto de Lítio/química , Rios/química , Temperatura , Compostos Orgânicos Voláteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA