Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Dev Cell ; 59(16): 2085-2100.e9, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38821057

RESUMO

The interactions of environmental compartments with epithelial cells are essential for mammary gland development and homeostasis. Currently, the direct crosstalk between the endothelial niche and mammary epithelial cells remains poorly understood. Here, we show that faciogenital dysplasia 5 (FGD5) is enriched in mammary basal cells (BCs) and mediates critical interactions between basal and endothelial cells (ECs) in the mammary gland. Conditional deletion of Fgd5 reduced, whereas conditional knockin of Fgd5 increased, the engraftment and expansion of BCs, regulating ductal morphogenesis in the mammary gland. Mechanistically, murine mammary BC-expressed FGD5 inhibited the transcriptional activity of activating transcription factor 3 (ATF3), leading to subsequent transcriptional activation and secretion of CXCL14. Furthermore, activation of CXCL14/CXCR4/ERK signaling in primary murine mammary stromal ECs enhanced the expression of HIF-1α-regulated hedgehog ligands, which initiated a positive feedback loop to promote the function of BCs. Collectively, these findings identify functionally important interactions between BCs and the endothelial niche that occur through the FGD5/CXCL14/hedgehog axis.


Assuntos
Diferenciação Celular , Células Epiteliais , Glândulas Mamárias Animais , Animais , Camundongos , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Retroalimentação Fisiológica , Transdução de Sinais , Humanos , Proliferação de Células
2.
Nat Commun ; 15(1): 203, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172124

RESUMO

Dysregulated hematopoietic niches remodeled by leukemia cells lead to imbalances in immunological mediators that support leukemogenesis and drug resistance. Targeting immune niches may ameliorate disease progression and tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive B-ALL (Ph+ B-ALL). Here, we show that T helper type 17 (Th17) cells and IL-17A expression are distinctively elevated in Ph+ B-ALL patients. IL-17A promotes the progression of Ph+ B-ALL. Mechanistically, IL-17A activates BCR-ABL, IL6/JAK/STAT3, and NF-kB signalling pathways in Ph+ B-ALL cells, resulting in robust cell proliferation and survival. In addition, IL-17A-activated Ph+ B-ALL cells secrete the chemokine CXCL16, which in turn promotes Th17 differentiation, attracts Th17 cells and forms a positive feedback loop supporting leukemia progression. These data demonstrate an involvement of Th17 cells in Ph+ B-ALL progression and suggest potential therapeutic options for Ph+ B-ALL with Th17-enriched niches.


Assuntos
Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Interleucina-17/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Doença Aguda
3.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34407391

RESUMO

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Assuntos
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrose Pulmonar/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular/fisiologia , Fibroblastos/patologia , Humanos , Camundongos , Miofibroblastos/patologia , Fibrose Pulmonar/patologia , Transdução de Sinais/fisiologia
4.
Sci Transl Med ; 13(586)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762435

RESUMO

Most basal-like breast cancers (BLBCs) are triple-negative breast cancers (TNBCs), which have the worst prognosis and distant metastasis-free survival among breast cancer subtypes. Now, no targeted therapies are available for patients with BLBC due to the lack of reliable and effective molecular targets. Here, we performed the BLBC tissue microarray-based immunohistochemical analysis and showed that Faciogenital Dysplasia 5 (FGD5) abundance is associated with poor prognosis in BLBCs. FGD5 deletion decreased the proliferation, invasion, and tumorsphere formation capacity of BLBC cells. Furthermore, genetic inhibition of Fgd5 in mouse mammary epithelial cells attenuated BLBC initiation and progression by reducing the self-renewal ability of tumor-initiating cells. In addition, FGD5 abundance was positively correlated with the abundance of epidermal growth factor receptor (EGFR) in BLBCs. FGD5 ablation decreased EGFR abundance by reducing EGFR stability in TNBC cells in 2D and 3D culture conditions. Mechanistically, FGD5 binds to EGFR and interferes with basal EGFR ubiquitination and degradation induced by the E3 ligase ITCH. Impaired EGFR degradation caused BLBC cell proliferation and promoted invasive properties and self-renewal. To verify the role of the FGD5-EGFR interaction in the regulation of EGFR stability, we screened a cell-penetrating α-helical peptide PER3 binding with FGD5 to disrupt the interaction. Treatment of BLBC patient-derived xenograft-bearing mice with the peptide PER3 disrupting the FGD5-EGFR interaction either with or without chemotherapy reduced BLBC progression. Our study identified FGD5 as a positive modulator of tumor-initiating cells and suggests a potential therapeutic option for the BLBC subtype of breast cancer.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas , Animais , Receptores ErbB , Feminino , Humanos , Camundongos , Neoplasias de Mama Triplo Negativas/genética
5.
Nat Commun ; 11(1): 6316, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298911

RESUMO

The transcription factor MYC is deregulated in almost all human cancers, especially in aggressive lymphomas, through chromosomal translocation, amplification, and transcription hyperactivation. Here, we report that high expression of tribbles homologue 3 (TRIB3) positively correlates with elevated MYC expression in lymphoma specimens; TRIB3 deletion attenuates the initiation and progression of MYC-driven lymphoma by reducing MYC expression. Mechanistically, TRIB3 interacts with MYC to suppress E3 ubiquitin ligase UBE3B-mediated MYC ubiquitination and degradation, which enhances MYC transcriptional activity, causing high proliferation and self-renewal of lymphoma cells. Use of a peptide to disturb the TRIB3-MYC interaction together with doxorubicin reduces the tumor burden in MycEµ mice and patient-derived xenografts. The pathophysiological relevance of UBE3B, TRIB3 and MYC is further demonstrated in human lymphoma. Our study highlights a key mechanism for controlling MYC expression and a potential therapeutic option for treating lymphomas with high TRIB3-MYC expression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Linfoma não Hodgkin/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , RNA-Seq , Proteínas Repressoras/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
6.
Nat Commun ; 11(1): 3660, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694521

RESUMO

High expression or aberrant activation of epidermal growth factor receptor (EGFR) is related to tumor progression and therapy resistance across cancer types, including non-small cell lung cancer (NSCLC). EGFR tyrosine kinase inhibitors (TKIs) are first-line therapy for NSCLC. However, patients eventually deteriorate after inevitable acquisition of EGFR TKI-resistant mutations, highlighting the need for therapeutics with alternative mechanisms of action. Here, we report that the elevated tribbles pseudokinase 3 (TRIB3) is positively associated with EGFR stability and NSCLC progression. TRIB3 interacts with EGFR and recruits PKCα to induce a Thr654 phosphorylation and WWP1-induced Lys689 ubiquitination in the EGFR juxtamembrane region, which enhances EGFR recycling, stability, downstream activity, and NSCLC stemness. Disturbing the TRIB3-EGFR interaction with a stapled peptide attenuates NSCLC progression by accelerating EGFR degradation and sensitizes NSCLC cells to chemotherapeutic agents. These findings indicate that targeting EGFR degradation is a previously unappreciated therapeutic option in EGFR-related NSCLC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Adulto , Animais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Taxa de Sobrevida , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Lett ; 474: 23-35, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31931029

RESUMO

Despite the success of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in the treatment of non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations, intrinsic or acquired resistance remains the major obstacle to long-term disease remission. Defective autophagy has been reported as an EGFR-TKI resistance mechanism. However, how EGFR regulate autophagic flux are still not fully understood. Here we found that EGFR-stimulated phosphorylation of SQSTM1 at tyrosine 433 induces dimerization of its UBA domain, which disturbs the sequestration function of SQSTM1 and causes autophagic flux blocking. SAH-EJ2, a staple optimized EGFR-derived peptide, showed enhanced in vitro and in vivo antitumor activity against NSCLC than the prototype regardless of EGFR mutation status. Mechanistically, SAH-EJ2 disrupts the EGFR-SQSTM1 interaction and protects against EGFR-induced SQSTM1 phosphorylation, which hinders the dimerization of the SQSTM1 UBA domains and restores SQSTM1 cargo function. Moreover, SAH-EJ2 suppresses EGFR activity by blocking its dimerization and reducing its protein stability, which reciprocally activates the core autophagy machinery. Our observations reveal that disturbing the EGFR-SQSTM1 interaction by SAH-EJ2 confers a potential strategy in the treatment of NSCLC through suppressing EGFR signalling and activating autophagy simultaneously.


Assuntos
Autofagia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Proteína Sequestossoma-1/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Autophagy ; 16(5): 782-796, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31286822

RESUMO

Impaired macroautophagy/autophagy is involved in the pathogenesis of hepatic fibrosis. However, how aberrant autophagy promotes fibrosis is far from understood. Here, we aimed to define a previously unrevealed pro-fibrotic mechanism for the stress protein TRIB3 (tribbles pseudokinase 3)-mediated autophagy dysfunction. Human fibrotic liver tissues were obtained from patients with cirrhosis who underwent an open surgical repair process. The functional implications of TRIB3 were evaluated in mouse models of hepatic fibrosis induced by bile duct ligation (BDL) or thioacetamide (TAA) injection. Human fibrotic liver tissues expressed higher levels of TRIB3 and selective autophagic receptor SQSTM1/p62 (sequestosome 1) than nonfibrotic tissues and the elevated expression of TRIB3 and SQSTM1 was positively correlated in the fibrotic tissues. Silencing Trib3 protected against experimentally induced hepatic fibrosis, accompanied by restored autophagy activity in fibrotic liver tissues. Furthermore, TRIB3 interacted with SQSTM1 and hindered its binding to MAP1LC3/LC3, which caused the accumulation of SQSTM1 aggregates and obstructed autophagic flux. The TRIB3-mediated autophagy impairment not only suppressed autophagic degradation of late endosomes but also promoted hepatocellular secretion of INHBA/Activin A-enriched exosomes which caused migration, proliferation and activation of hepatic stellate cells (HSCs), the effector cells of liver fibrosis. Disrupting the TRIB3-SQSTM1 interaction with a specific helical peptide exerted potent protective effects against hepatic fibrosis by restoring autophagic flux in hepatocytes and HSCs. Together, stress-elevated TRIB3 expression promotes hepatic fibrosis by interacting with SQSTM1 and interfering with its functions in liver-parenchymal cells and activating HSCs. Targeting this interaction is a promising strategy for treating fibroproliferative liver diseases.Abbreviations: 3-MA: 3-methyladenine; AAV: adeno-associated virus; ACTA2/α-SMA: actin, alpha 2, smooth muscle, aorta; BDL: bile duct ligation; BECN1/Beclin 1: beclin 1, autophagy related; CHX: cycloheximide; CQ: chloroquine; Edu: 5-ethynyl-2-deoxyuridine; ESCRT: endosomal sorting complexes required for transport; HSC: hepatic stellate cell; ILV: intralumenal vesicle; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MVB: multivesicular body; PIK3C3: phosphatidylinositol 3-kinase, catalytic subunit type 3; PPI: protein-protein interaction; SQSTM1/p62: sequestosome 1; TAA: thioacetamide; TEM: transmission electron microscopy; TGFB1/TGFß1: transforming growth factor, beta 1; TLR2: toll-like receptor 2; TRIB3: tribbles pseudokinase 3.


Assuntos
Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Cirrose Hepática/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Autofagia/genética , Proteínas de Ciclo Celular/genética , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteína Sequestossoma-1/genética
9.
Nat Commun ; 10(1): 5720, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844113

RESUMO

The existence of breast cancer stem cells (BCSCs) is a major reason underlying cancer metastasis and recurrence after chemotherapy and radiotherapy. Targeting BCSCs may ameliorate breast cancer relapse and therapy resistance. Here we report that expression of the pseudokinase Tribble 3 (TRIB3) positively associates with breast cancer stemness and progression. Elevated TRIB3 expression supports BCSCs by interacting with AKT to interfere with the FOXO1-AKT interaction and suppress FOXO1 phosphorylation, ubiquitination, and degradation by E3 ligases SKP2 and NEDD4L. The accumulated FOXO1 promotes transcriptional expression of SOX2, a transcriptional factor for cancer stemness, which in turn, activates FOXO1 transcription and forms a positive regulatory loop. Disturbing the TRIB3-AKT interaction suppresses BCSCs by accelerating FOXO1 degradation and reducing SOX2 expression in mouse models of breast cancer. Our study provides insights into breast cancer development and confers a potential therapeutic strategy against TRIB3-overexpressed breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Forkhead Box O1/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/genética , Animais , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise Serial de Tecidos , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Immunity ; 51(3): 522-534.e7, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471107

RESUMO

Although recent progress provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), rare anti-PF therapeutics show definitive promise for treating this disease. Repeated lung epithelial injury results in injury-repairing response and inflammation, which drive the development of PF. Here, we report that chronic lung injury inactivated the ubiquitin-editing enzyme A20, causing progressive accumulation of the transcription factor C/EBPß in alveolar macrophages (AMs) from PF patients and mice, which upregulated a number of immunosuppressive and profibrotic factors promoting PF development. In response to chronic lung injury, elevated glycogen synthase kinase-3ß (GSK-3ß) interacted with and phosphorylated A20 to suppress C/EBPß degradation. Ectopic expression of A20 or pharmacological restoration of A20 activity by disturbing the A20-GSK-3ß interaction accelerated C/EBPß degradation and showed potent therapeutic efficacy against experimental PF. Our study indicates that a regulatory mechanism of the GSK-3ß-A20-C/EBPß axis in AMs may be a potential target for treating PF and fibroproliferative lung diseases.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Macrófagos/metabolismo , Fibrose Pulmonar/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Regulação para Cima/fisiologia
11.
Microb Pathog ; 130: 204-212, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30885749

RESUMO

A proliferation of studies have demonstrated that the toll-like receptor 2 (TLR2) pathway affects the chemotaxis, phagocytosis, and cytokine release of neutrophils when pathogens invade. Our previous studies have demonstrated that pretreatment with high doses of Pam3CSK4 (>25 µg/ml) improves the antimicrobial activity of neutrophils, however, short-lived neutrophils limit their therapeutic functions. Here, we used granulocyte macrophage-colony stimulating factor (GM-CSF) to generate neutrophils from murine bone marrow, and assessed their effect on the immune response against methicillin-resistant Staphylococcus aureus. As comparing with classical method of generating neutrophils directly from murine bone marrow, our findings show that pretreatment with Pam3CSK4 enhanced the phagocytic and killing activities against MRSA by the GM-CSF induced neutrophils (GM-CSF neutrophils). Chemotaxis of GM-CSF induced neutrophils was significantly increased after the pretreatment with Pam3CSK4. Furthermore, Pam3CSK4 pretreatment enhanced iNOS, CRAMP, TNF-α, IL-1ß, IL-10, and IL-6 expression. Finally, we observed that p38MAPK and Akt phosphorylation kinases were increased significantly in GM-CSF neutrophils pretreatment with Pam3CSK4 in a dose- and time-dependent manner, whereas p38MAPK inhibitor (SB2021190) and PI3K inhibitor (LY294002) attenuated the antimicrobial activities including phagocytosis, killing activity, respiratory burst, and the release of lactoferrin(LTF) by the GM-CSF induced neutrophils. Together, these findings suggest that pretreatment with Pam3CSK4 enhances the antibacterial function of GM-CSF neutrophils against MRSA, and this could be related to the p38MAPK and PI3K signaling pathways.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Lipopeptídeos/metabolismo , Staphylococcus aureus Resistente à Meticilina/imunologia , Neutrófilos/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Camundongos , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Explosão Respiratória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Gastroenterology ; 156(3): 708-721.e15, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30365932

RESUMO

BACKGROUND & AIMS: Activation of Wnt signaling to ß-catenin contributes to the development of colorectal cancer (CRC). Expression of tribbles pseudo-kinase 3 (TRIB3) is increased in some colorectal tumors and associated with poor outcome. We investigated whether increased TRIB3 expression promotes stem cell features of CRC cells and tumor progression by interacting with the Wnt signaling pathway. METHODS: We performed studies with C57BL/6J-ApcMin/J mice injected with an adeno-associated virus vector that expresses a small hairpin RNA against Trib3 mRNA (ApcMin/J-Trib3KD) or a control vector (ApcMin/J-Ctrl). We created BALB/c mice that overexpress TRIB3 from an adeno-associated virus vector and mice with small hairpin RNA-mediated knockdown of ß-catenin. The mice were given azoxymethane followed by dextran sodium sulfate to induce colitis-associated cancer. Intestinal tissues were collected and analyzed by histology, gene expression profiling, immunohistochemistry, and immunofluorescence. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5)-positive (LGR5Pos) and LGR5-negative (LGR5Neg) HCT-8 CRC cells, with or without knockdown or transgenic expression of TRIB3, were sorted and analyzed in sphere-formation assays. We derived organoids from human and mouse colorectal tumors to analyze the function of TRIB3 and test the effect of a peptide inhibitor. Wnt signaling to ß-catenin was analyzed in dual luciferase reporter, chromatin precipitation, immunofluorescence, and immunoblot assays. Proteins that interact with TRIB3 were identified by immunoprecipitation. CRC cell lines were grown in nude mice as xenograft tumors. RESULTS: At 10 weeks of age, more than half the ApcMin/J-Ctrl mice developed intestinal high-grade epithelial neoplasia, whereas ApcMin/J-Trib3KD mice had no intestinal polyps and normal histology. Colon tissues from ApcMin/J-Trib3KD mice expressed lower levels of genes regulated by ß-catenin and genes associated with cancer stem cells. Mice with overexpression of Trib3 developed more tumors after administration of azoxymethane and dextran sodium sulfate than BALB/c mice. Mice with knockdown of ß-catenin had a lower tumor burden after administration of azoxymethane and dextran sodium sulfate, regardless of Trib3 overexpression. Intestinal tissues from mice with overexpression of Trib3 and knockdown of ß-catenin did not have activation of Wnt signaling or expression of genes regulated by ß-catenin. LGR5Pos cells sorted from HCT-8 cells expressed higher levels of TRIB3 than LGR5Neg cells. CRC cells that overexpressed TRIB3 had higher levels of transcription by ß-catenin and formed larger spheroids than control CRC cells; knockdown of ß-catenin prevented the larger organoid size caused by TRIB3 overexpression. TRIB3 interacted physically with ß-catenin and transcription factor 4 (TCF4). TRIB3 overexpression increased, and TRIB3 knockdown decreased, recruitment of TCF4 and ß-catenin to the promoter region of genes regulated by Wnt. Activated ß-catenin increased expression of TRIB3, indicating a positive-feedback loop. A peptide (P2-T3A6) that bound ß-catenin disrupted its interaction with TRIB3 and TCF4. In primary CRC cells and HCT-8 cells, P2-T3A6 decreased expression of genes regulated by ß-catenin and genes associated with cancer stem cells and decreased cell viability and migration. Injection of C57BL/6J-ApcMin/J mice with P2-T3A6 decreased the number and size of tumor nodules and colon expression of genes regulated by ß-catenin. P2-T3A6 increased 5-fluorouracil-induced death of CRC cells and survival times of mice with xenograft tumors. CONCLUSION: TRIB3 interacts with ß-catenin and TCF4 in intestine cells to increase expression of genes associated with cancer stem cells. Knockdown of TRIB3 decreases colon neoplasia in mice, migration of CRC cells, and their growth as xenograft tumors in mice. Strategies to block TRIB3 activity might be developed for treatment of CRC.


Assuntos
Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/genética , beta Catenina/metabolismo , Animais , Comunicação Celular/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Distribuição Aleatória , Sensibilidade e Especificidade , Regulação para Cima , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Asian Nat Prod Res ; 20(1): 14-26, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28954538

RESUMO

Autophagy is a major intracellular degradation pathway that sequesters multiple cytoplasmic components, including accumulated proteins, damaged organelles, or invading micro-organisms and delivers them to lysosomes for degradation. Autophagy dysregulation is implicated in the pathogenesis of multiple diseases, such as aging, cancers, diabetes. The latest insights into molecular mechanisms of autophagy lead to the discovery of potential drug targets. Traditional drugs with new clinical applications are not only commonly found in western medicines, but also highlighted in traditional Chinese medicines (TCMs). Recent research findings shed light on the potential novel applications and formulation of TCMs via regulation of autophagy, indicating autophagy modulation may be an important mechanism underlying the therapeutic effect of TCMs in treating diseases. Here, we summarize the roles of autophagy in the pharmacological actions of TCMs and discuss to discover ideal autophagy modulators from TCMs with considerably higher selectivity for various human disease treatment.


Assuntos
Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Humanos , Neoplasias
14.
Cancer Cell ; 31(5): 697-710.e7, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28486108

RESUMO

Acute promyelocytic leukemia (APL) is driven by the oncoprotein PML-RARα, which antagonizes myeloid differentiation and promotes APL-initiating cell self-renewal. Combined all-trans retinoic acid (ATRA) with arsenic trioxide (As2O3) or chemotherapy dramatically improves the prognosis of APL patients. Here we report that expression of pseudokinase Tribble 3 (TRIB3) associates positively with APL progression and therapeutic resistance. The elevated TRIB3 expression promotes APL by interacting with PML-RARα and suppressing its sumoylation, ubiquitylation, and degradation. This represses PML nuclear body assembly, p53-mediated senescence, and cell differentiation, and supports cellular self-renewal. Genetically inhibiting TRIB3 expression or combination of a peptide disturbing TRIB3/PML-RARα interaction with ATRA/As2O3 eradicates APL by accelerating PML-RARα degradation. Our study provides insight into APL pathogenesis and a potential therapeutic option against APL.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Senescência Celular , Leucemia Promielocítica Aguda/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Trióxido de Arsênio , Arsenicais/farmacologia , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação da Expressão Gênica , Fusão Gênica , Células HEK293 , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Proteínas de Fusão Oncogênica/genética , Óxidos/farmacologia , Peptídeos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Repressoras/genética , Transdução de Sinais , Sumoilação , Fatores de Tempo , Transfecção , Tretinoína/farmacologia , Proteína Supressora de Tumor p53/genética , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Lett ; 365(2): 190-200, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26049022

RESUMO

B-cell CLL/lymphoma 6 (BCL6), a transcriptional repressor, is involved in the development and progression of breast cancers with uncertain mechanism. The purpose of this study is to investigate the potential effect and mechanism of BCL6 in the regulation of epithelial-mesenchymal transition (EMT), a critical cellular process for controlling the development and progression of breast cancers. We found that BCL6 promoted invasion, migration and growth by stimulating EMT in breast cancer cells. BCL6 induced EMT by enhancing the expression of transcriptional repressor ZEB1 which bound to the E-cadherin promoter and repressing the E-cadherin transcription. Deletion of ZEB1 protected against the pro-EMT roles of BCL6 by restoring the expression of E-cadherin in these cells. Moreover, inhibition of BCL6 with BCL6 inhibitor 79-6 suppressed these functions of BCL6 in breast cancer cells. These findings indicate that BCL6 promotes EMT via enhancing the ZEB1-mediated transcriptional repression of E-cadherin in breast cancer cells. Targeting BCL6 has therapeutic potential against the development and progression of breast cancer.


Assuntos
Neoplasias da Mama/genética , Caderinas/genética , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Mama/patologia , Caderinas/biossíntese , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Feminino , Proteínas de Homeodomínio/genética , Humanos , Células MCF-7 , Invasividade Neoplásica/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-bcl-6 , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição/genética , Transcrição Gênica/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
16.
Biochem Biophys Res Commun ; 463(3): 200-4, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25998380

RESUMO

The corticotropin releasing factor (CRF) plays a central role in regulating the activities of hypothalamic-pituitary-adrenal (HPA) axis in the presence of a variety of stressful stimuli via binding to its type 1 receptors (CRFR1). Despite that many peptidic or non-peptidic antagonists of CRFR1 have been developed to serve as therapeutic tools to CRF-related pathologies, none of them have been utilized clinically. Targeting the extracellular domain 1 (EC1) of CRFR1, the CRF-binding site, represents a new strategy to inhibit the function of the receptor. However, no such agents have been identified up to now. Herein, by using an 87-amino acid fragment corresponding to the EC1 region as the bait, we screened the binding polypeptides from a phage display (Ph.D.-12) peptide library. After 3-round biopanning, positive clones were selected and the polypeptides carried by them were identified. 5 polypeptides were found to bind with the target specifically. Among them, the P7 exhibited the highest affinity. By evaluating the cAMP accumulation in the CRFR1 or CRFR2-expressing HEK293 cells, we demonstrated that P7 blocking the function of CRFR1, but not CRFR2. In addition, we also found that P7 and CRF act on CRFR1 competitively. Taken together, we reveal that P7, a novel polypeptide identified from phage display library, inhibits the function of CRFR1 effectively and specifically by binding at its EC1 domain. The new polypeptide might provide a promising agent for diagnostic or therapeutic utilities in CRF-related disorders.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Sequência de Aminoácidos , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Biblioteca de Peptídeos , Estrutura Terciária de Proteína , Receptores de Hormônio Liberador da Corticotropina/química
17.
Zhonghua Liu Xing Bing Xue Za Zhi ; 35(1): 85-7, 2014 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-24685045

RESUMO

UNLABELLED: To investigate the changes in ovarian function and the radiotherapeutic influence on ovarian function on patients with cervical squamous cell carcinoma. METHODS: We retrospectively analyzed 53 cases of cervical cancer patients FIGO staging I B1- II B who had received ovarian transposition surgery at the Maternal and Child Health Hospital of Jiangxi province from January 2009 to June 2012. All the patients included in the study were FIGO staging I B1- II B and had undergone radiation therapy, including 38 staging I B1- II A2 cervical cancer patients receiving chemo-therapy after radical radiotherapy due to the presence of risk factors and other 15 patients with stage II B to radical concurrent chemoradiotherapy ovarian transposition. Ovarian transposition methods would include laparoscopic ovarian transposition and transabdominal ovarian transposition. 15 concurrent patients with stage II B who currently receiving chemo-radiotherapy were under laparoscopic ovarian transposition. Among the 38 radical hysterectomy patients, 31 were having abdominal ovarian transposition, and the remaining 7 cases were laparoscopic. All the 53 patients had undergone radiotherapy. The levels of serum female hormones FSH, LH, E2 were determined to monitor the ovarian endocrine function. RESULTS: According to FIGO staging, 18 cases were stage I B1, 15 cases I B2, 3 cases II A1, 2 cases II A2 and 15 cases II B. Patients' age range was from 28 to 44 years old, with an average of 37.7 years, median age as 38 years. 14 patients (63.6%) were still normal ovarian function after radiotherapy by laparoscopic ovarian transposition, which was 100.0% before radiotherapy. There was a significant difference (P < 0.05)compared with before radiotherapy. After transabdominal ovarian transposition surgery and radiotherapy, normal ovarian function 22 cases (71.0%), and there was a significant difference (P < 0.05) compared with before radiotherapy. No significant difference was found with regard to the proportion of normal ovarian function after radiotherapy between the two groups of patients with laparoscopic and transabdominal ovarian transposition (P > 0.05). CONCLUSION: For the young cervical cancer patients, even with ovarian transposition, ovarian dysfunction was still evident after radiotherapy. There was no significant difference between laparoscopic and transabdominal ovarian transposition.


Assuntos
Ovário/fisiopatologia , Ovário/cirurgia , Neoplasias do Colo do Útero/cirurgia , Adulto , Feminino , Humanos , Estadiamento de Neoplasias , Período Pós-Operatório , Estudos Retrospectivos
18.
Phytomedicine ; 20(10): 897-903, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23694749

RESUMO

Traditional Chinese medicines have been recognized as a new source of anticancer drugs or chemotherapy adjuvant to enhance the efficacy of chemotherapy and to ameliorate the side effects. This study aimed to investigate the antitumor effects of combined Scutellaria barbata D. Don extract (SBE) and 5-FU treatment in vitro and in vivo and the potential mechanisms. SBE was prepared and analyzed by HPLC. Tumor growth inhibition both in vitro and in vivo, cell apoptosis, apoptosis related protein expressions (P53, bid, bax, bcl-2), caspase-3 activities and 5-FU related enzymes were assessed. SBE could significantly synergize the antitumor effects of low dose 5-FU both in vivo and in vitro. SBE could increase the apoptosis inducing effect of low dose 5-FU in both Bel-7402 and HCT-8 cells. Also, caspase-3 activities, P53 and bax expressions were significantly increased, while bid and bcl-2 expressions were significantly decreased in drug combination groups, compared with individual drug treatment groups. Furthermore, SBE could significantly decrease the mRNA levels of dihydropyrimidine dehydrogenase. These results showed that combined treatment with SBE and low dose 5-FU can significantly inhibit the tumor growth both in vitro and in vivo, which might be related with apoptosis and regulations of 5-FU metabolism.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Fluoruracila/administração & dosagem , Fitoterapia , Extratos Vegetais/uso terapêutico , Scutellaria/química , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA