Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(2): 140-148, 2023 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37056179

RESUMO

OBJECTIVES: To investigate the effect of recombinant human fibroblast growth factor 21 (rhFGF21) on the proliferation and mineralization of cementoblasts and its mechanism. METHODS: Hematoxylin eosin, immunohistochemical staining, and immunofluorescence were used to detect the expression and distribution of fibroblast growth factor 21 (FGF21) in rat periodontal tissues and cementoblasts (OCCM-30), separately. Cell Counting Kit-8 was used to detect the proliferation of OCCM-30 under treatment with rhFGF21. Alkaline phosphatase staining and Alizarin Red staining were used to detect the mineralization state of OCCM-30 after 3 and 7 days of mineralization induction. The transcription and protein expression of the osteogenic-related genes Runx2 and Osterix were detected by real-time quantitative polymerase chain reaction (PCR) and Western blot analysis. The expression levels of genes of transforming growth factor ß (TGFß)/bone morphogenetic protein (BMP) signaling pathway in OCCM-30 were detected through PCR array analysis. RESULTS: FGF21 was expressed in rat periodontal tissues and OCCM-30. Although rhFGF21 had no significant effect on the proliferation of OCCM-30, treatment with 50 ng/mL rhFGF21 could promote the mineralization of OCCM-30 cells after 7 days of mineralization induction. The transcriptional levels of Runx2 and Osterix increased significantly at 3 days of mineralization induction and decreased at 5 days of mineralization induction. Western blot analysis showed that the protein expression levels of Runx2 and Osterix increased during mineralization induction. rhFGF21 up-regulated Bmpr1b protein expression in cells. CONCLUSIONS: rhFGF21 can promote the mineralization ability of OCCM-30. This effect is related to the activation of the TGFß/BMP signaling pathway.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Cemento Dentário , Humanos , Ratos , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Diferenciação Celular , Proteínas Morfogenéticas Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
2.
Cell Commun Signal ; 20(1): 88, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705970

RESUMO

BACKGROUND: The existence of mesenchymal stem cells (MSCs) in Schneiderian membrane has not been determined. The aim of this study is to investigate whether there are MSCs in Schneiderian membrane, and the effect of platelet-rich fibrin (PRF) on osteogenic differentiation of these cells and on new bone formation in maxillary sinus after maxillary sinus floor elevation. METHODS: Schneiderian membrane derived mesenchymal stem cells (SM-MSCs) were isolated from rabbit maxillary sinus. Cells were identified by flow cytometry and multipotential differentiation. Real-time cell analysis assay, fluorescence staining, transwell assay, and wound healing assay were used to determine the effects of PRF stimulation on cell proliferation and migration. The osteogenic differentiation ability of cells stimulated by PRF or osteoinductive medium was evaluated by alkaline phosphatase staining, alizarin red staining, PCR and Western blot. Equivalent volume Bio-oss and the mixture of Bio-oss and PRF were used as bone graft materials for maxillary sinus floor elevation. Micro-CT, bone double-staining, HE staining, Masson staining, and toluidine blue staining were used to evaluate the osteogenic effect in 8 and 12 weeks after surgery. RESULTS: The cell surface markers were positive for expression of CD90, CD105, and negative for expression of CD34, CD45. SM-MSCs had the ability of osteogenic, adipogenic and chondrogenic differentiation. PRF could stimulate proliferation, migration and osteogenic differentiation of SM-MSCs, which was achieved by up-regulating ERK 1/2 signaling pathway. PRF could accelerate the formation of new bone in maxillary sinus and increase the amount of new bone formation. CONCLUSIONS: MSCs existed in Schneiderian membrane, and PRF stimulation could promote cell proliferation, migration and osteogenic differentiation. The application of PRF in maxillary sinus floor elevation could accelerate bone healing and increase the quantity and quality of new bone. PRF, as autologous graft materials, might offer a promising strategy for the clinical bone formation during MSFE procedure. Video Abstract.


Assuntos
Células-Tronco Mesenquimais , Fibrina Rica em Plaquetas , Levantamento do Assoalho do Seio Maxilar , Animais , Diferenciação Celular , Células Cultivadas , Seio Maxilar , Células-Tronco Mesenquimais/metabolismo , Mucosa Nasal , Osteogênese , Coelhos , Levantamento do Assoalho do Seio Maxilar/métodos
3.
Tissue Eng Regen Med ; 18(5): 895-904, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339025

RESUMO

BACKGROUND: An in vitro study on rapid culturing method of human gingival fibroblast cells (HGFCs) was established to investigate the potential use of the leukocyte-platelet rich fibrin (L-PRF) in tissue engineering technology, different medical fields, including periodontology and implantology. METHODS: Eight biopsies were obtained from eight different donors and a modified culturing technique was developed to obtain HGFCs. The modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay was used to compare the cell viability when the modified culturing method was used in comparison to the standard method. Blood samples were collected from the same patients and L-PRF was isolated using a standard protocol. The releases of platelet-derived growth factor-AA and transforming growth factor-beta1 at various time intervals were observed using enzyme-linked immunosorbent assay (ELISA) kit. The proliferative effect of L-PRF on HGFCs was assessed by the cell counting kit-8 assay. RESULTS: A simple and rapid modified method for in vitro HGFC culture yielded a cellular monolayer within three to nine days after cell culture. L-PRF with three-dimensional polymer fibers released growth factors that peaked during the first three hours and continued to produce up to 10 days. The L-PRF presented a dose-dependent effect on HGFCs proliferation where HGFCs proliferation increased with an increase in L-PRF concentration. CONCLUSION: The modified technique for the culture of HGFCs might be useful for the development of future experimental and clinical studies, besides L-PRF has great therapeutic potential in oral surgery fields.


Assuntos
Fibrina Rica em Plaquetas , Proliferação de Células , Fibroblastos , Gengiva , Humanos , Leucócitos
4.
Biomed Res Int ; 2019: 3295756, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886202

RESUMO

Platelet-rich fibrin (PRF) is an autologous platelet concentrate that consists of cytokines, platelets, leukocytes, and circulating stem cells. It has been considered to be effective in bone regeneration and is mainly used for oral and maxillofacial bone. Although currently the use of PRF is thought to support alveolar ridge preservation, there is a lack of evidence regarding the application of PRF in osteogenesis. In this paper, we will provide examples of PRF application, and we will also summarize different measures to improve the properties of PRF for achieving better osteogenesis. The effect of PRF as a bone graft material on osteogenesis based on laboratory investigations, animal tests, and clinical evaluations is first reviewed here. In vitro, PRF was able to stimulate cell proliferation, differentiation, migration, mineralization, and osteogenesis-related gene expression. Preclinical and clinical trials suggested that PRF alone may have a limited effect. To enlighten researchers, modified PRF graft materials are further reviewed, including PRF combined with other bone graft materials, PRF combined with drugs, and a new-type PRF. Finally, we will summarize the common shortcomings in the application of PRF that probably lead to application failure. Future scientists should avoid or solve these problems to achieve better regeneration.


Assuntos
Processo Alveolar , Regeneração Óssea/efeitos dos fármacos , Transplante Ósseo , Procedimentos Cirúrgicos Bucais , Osteogênese/efeitos dos fármacos , Fibrina Rica em Plaquetas , Processo Alveolar/metabolismo , Processo Alveolar/patologia , Processo Alveolar/cirurgia , Animais , Transplante Ósseo/classificação , Transplante Ósseo/métodos , Humanos , Procedimentos Cirúrgicos Bucais/classificação , Procedimentos Cirúrgicos Bucais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA