Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 17(15): 5656-64, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19596199

RESUMO

Diadenosine disulfide (5) was reported to inhibit NAD kinase from Listeria monocytogenes and the crystal structure of the enzyme-inhibitor complex has been solved. We have synthesized tiazofurin adenosine disulfide (4) and the disulfide 5, and found that these compounds were moderate inhibitors of human NAD kinase (IC(50)=110 microM and IC(50)=87 microM, respectively) and Mycobacterium tuberculosis NAD kinase (IC(50)=80 microM and IC(50)=45 microM, respectively). We also found that NAD mimics with a short disulfide (-S-S-) moiety were able to bind in the folded (compact) conformation but not in the common extended conformation, which requires the presence of a longer pyrophosphate (-O-P-O-P-O-) linkage. Since majority of NAD-dependent enzymes bind NAD in the extended conformation, selective inhibition of NAD kinases by disulfide analogues has been observed. Introduction of bromine at the C8 of the adenine ring restricted the adenosine moiety of diadenosine disulfides to the syn conformation making it even more compact. The 8-bromoadenosine adenosine disulfide (14) and its di(8-bromoadenosine) analogue (15) were found to be the most potent inhibitors of human (IC(50)=6 microM) and mycobacterium NAD kinase (IC(50)=14-19 microM reported so far. None of the disulfide analogues showed inhibition of lactate-, and inosine monophosphate-dehydrogenase (IMPDH), enzymes that bind NAD in the extended conformation.


Assuntos
Adenosina/química , Adenosina/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Ribavirina/análogos & derivados , Adenosina/síntese química , Sítios de Ligação , Dissulfetos/síntese química , Humanos , Modelos Moleculares , Conformação Molecular , Mycobacterium tuberculosis/enzimologia , NAD/análogos & derivados , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ribavirina/síntese química , Ribavirina/química , Ribavirina/farmacologia
2.
Bioorg Med Chem ; 16(1): 390-9, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17905588

RESUMO

Nitrogenous bisphosphonates are used clinically to reduce bone resorption associated with osteoporosis or metastatic bone disease, and are recognized as inhibitors of farnesyl diphosphate synthase. Inhibition of this enzyme decreases cellular levels of both farnesyl diphosphate and geranylgeranyl diphosphate which results in a variety of downstream biological effects including inhibition of protein geranylgeranylation. Our lab recently has prepared several isoprenoid bisphosphonates that inhibit protein geranylgeranylation and showed that one selectively inhibits geranylgeranyl diphosphate synthase. This results in depletion of intracellular geranylgeranyl diphosphate and impacts protein geranylgeranylation but does not affect protein farnesylation. To clarify the structural features of isoprenoid bisphosphonates that account for their geranylgeranyl diphosphate synthase inhibition, we have prepared a new group of isoprenoid bisphosphonates. The complete set of compounds has been tested for in vitro inhibition of human recombinant geranylgeranyl diphosphate synthase and cellular inhibition of protein geranylgeranylation. These results show some surprising relationships between in vitro and cellular activity, and will guide development of clinical agents directed at geranylgeranyl diphosphate synthase.


Assuntos
Farnesiltranstransferase/antagonistas & inibidores , Fosfatos de Poli-Isoprenil/síntese química , Fosfatos de Poli-Isoprenil/farmacologia , Difosfonatos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Humanos , Células K562 , Prenilação de Proteína/efeitos dos fármacos
3.
J Chromatogr A ; 1165(1-2): 136-43, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17709112

RESUMO

Several volatile compounds, including terpenoids, fatty alcohols, fatty acids and some of their esters, were identified from solvent extracts prepared from anal scent glands of nutria (a.k.a. coypu), a serious rodent pest ravaging wetlands in the USA. The major terpenoid constituents were identified as (E,E)-farnesol and its esters by a comparison of their gas chromatographic retention times, and electron-ionization (EI) and chemical-ionization (CI) mass spectra with those of authentic compounds. EI mass spectra of the four farnesol isomers are very similar, however, the ChemStation (Agilent) and GC-MS Solution (Shimadzu) software algorithms were able to identify the natural compound as the (E,E)-isomer, when a high-quality mass spectral library was compiled from reference samples and used for searching. Similarly, the esters were identified as those of (E,E)-farnesol. In contrast to EI spectra, the CI spectra of the (E,E)- and (E,Z)-isomers are distinctly different from those of the (Z,E)- and (Z,Z)-isomers. The intensities (I) of the peaks for the m/z 137 and 121 ions in the CI spectra offer a way of determining the configuration of the C-2 double bond of farnesols (for 2E isomers I(137)>I(121), whereas for 2Z isomers I(137)

Assuntos
Farneseno Álcool/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Roedores , Glândulas Odoríferas/química , Espectrofotometria Infravermelho/métodos , Animais , Ésteres/isolamento & purificação , Farneseno Álcool/química , Isomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA