Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 11(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35567147

RESUMO

Soybean is a valuable crop, used in animal feed and for human consumption. Selecting soybean cultivars with low seed cadmium (Cd) concentration is important for the purpose of minimizing the transfer of Cd into the human body. To ensure international trade, farmers need to produce soybean that meets the European Union (EU) Cd limit of 0.2 mg kg-1. In this study, we evaluated two populations of recombinant inbred lines (RILs), X5154 and X4050, for seed Cd accumulation. Linkage maps were constructed with 325 and 280 polymorphic simple sequence repeat (SSR) markers, respectively, and used to identify a novel minor quantitative trait locus (QTL) on chromosome 13 in the X4050 population between SSR markers Satt522 and Satt218. Based on a gene ontology search within the QTL region, seven genes were identified as candidates responsible for low seed Cd accumulation, including Glyma.13G308700 and Glyma.13G309100. In addition, we confirmed the known major gene, Cda1, in the X5154 population and developed KASP and CAPS/dCAPS allele-specific markers for efficient marker-assisted breeding for Cda1.

2.
Plant J ; 101(2): 384-400, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562664

RESUMO

Endocytosis and endosomal trafficking play essential roles in diverse biological processes including responses to pathogen attack. It is well established that animal viruses enter host cells through receptor-mediated endocytosis for infection. However, the role of endocytosis in plant virus infection still largely remains unknown. Plant dynamin-related proteins 1 (DRP1) and 2 (DRP2) are the large, multidomain GTPases that participate together in endocytosis. Recently, we have discovered that DRP2 is co-opted by Turnip mosaic virus (TuMV) for infection in plants. We report here that DRP1 is also required for TuMV infection. We show that overexpression of DRP1 from Arabidopsis thaliana (AtDRP1A) promotes TuMV infection, and AtDRP1A interacts with several viral proteins including VPg and cylindrical inclusion (CI), which are the essential components of the virus replication complex (VRC). AtDRP1A colocalizes with the VRC in TuMV-infected cells. Transient expression of a dominant negative (DN) mutant of DRP1A disrupts DRP1-dependent endocytosis and supresses TuMV replication. As adaptor protein (AP) complexes mediate cargo selection for endocytosis, we further investigated the requirement of AP in TuMV infection. Our data suggest that the medium unit of the AP2 complex (AP2ß) is responsible for recognizing the viral proteins as cargoes for endocytosis, and knockout of AP2ß impairs intracellular endosomal trafficking of VPg and CI and inhibits TuMV replication. Collectively, our results demonstrate that DRP1 and AP2ß are two proviral host factors of TuMV and shed light into the involvement of endocytosis and endosomal trafficking in plant virus infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Dinaminas/metabolismo , Vírus de Plantas/metabolismo , Vírus de RNA/metabolismo , Proteínas Virais/metabolismo , Proteínas de Arabidopsis/genética , Dinaminas/genética , Endocitose , Endossomos , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas , Vírus de Plantas/patogenicidade , Plantas Geneticamente Modificadas , Potyvirus , Domínios e Motivos de Interação entre Proteínas , Vírus de RNA/patogenicidade , Nicotiana/genética , Replicação Viral/fisiologia
3.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258010

RESUMO

Endocytosis and endosomal trafficking regulate the proteins targeted to the plasma membrane and play essential roles in diverse cellular processes, including responses to pathogen attack. Here, we report the identification of Glycine max (soybean) endocytosis dynamin-like protein 5A (GmSDL5A) associated with purified soybean mosaic virus (SMV) virions from soybean using a bottom-up proteomics approach. Knockdown of GmSDL5A and its homologous gene GmSDL12A inhibits SMV infection in soybean. The role of analogous dynamin-like proteins in potyvirus infection was further confirmed and investigated using the Arabidopsis/turnip mosaic virus (TuMV) pathosystem. We demonstrate that dynamin-related proteins 2A and 2B in Arabidopsis thaliana (AtDRP2A, AtDRP2B), homologs of GmSDL5A, are recruited to the virus replication complex (VRC) of TuMV. TuMV infection is inhibited in both A. thalianadrp2a (atdrp2a) and atdrp2b knockout mutants. Overexpression of AtDRP2 promotes TuMV replication and intercellular movement. AtRDP2 interacts with TuMV VPg, CP, CI, and 6K2. Of these viral proteins, VPg, CP, and CI are essential for viral intercellular movement, and 6K2, VPg, and CI are critical components of the VRC. We reveal that VPg and CI are present in the punctate structures labeled by the endocytic tracer FM4-64, suggesting that VPg and CI can be endocytosed. Treatment of plant leaves with a dynamin-specific inhibitor disrupts the delivery of VPg and CI to endocytic structures and suppresses TuMV replication and intercellular movement. Taken together, these data suggest that dynamin-like proteins are novel host factors of potyviruses and that endocytic processes are involved in potyvirus infection.IMPORTANCE It is well known that animal viruses enter host cells via endocytosis, whereas plant viruses require physical assistance, such as human and insect activities, to penetrate the host cell to establish their infection. In this study, we report that the endocytosis pathway is also involved in virus infection in plants. We show that plant potyviruses recruit endocytosis dynamin-like proteins to support their infection. Depletion of them by knockout of the corresponding genes suppresses virus replication, whereas overexpression of them enhances virus replication and intercellular movement. We also demonstrate that the dynamin-like proteins interact with several viral proteins that are essential for virus replication and cell-to-cell movement. We further show that treatment of a dynamin-specific inhibitor disrupts endocytosis and inhibits virus replication and intercellular movement. Therefore, the dynamin-like proteins are novel host factors of potyviruses. The corresponding genes may be manipulated using advanced biotechnology to control potyviral diseases.


Assuntos
Arabidopsis/virologia , Dinaminas/metabolismo , Endocitose , Glycine max/virologia , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade , Sequência de Aminoácidos , Dinaminas/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Homologia de Sequência
4.
Plant Sci ; 270: 23-29, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29576076

RESUMO

A single point-mutation in GmHMA3 (Glycine max heavy metal-associated ATPase; a wild type allele cloned from a low Cd-accumulated soybean) is closely associated with seed cadmium (Cd) concentration. It is linked to Cd transportation in yeast, and is primarily expressed in the roots of plants. We hypothesized that the function of GmHMA3w in soybean would be akin to that of OsHMA3 in rice, which expresses in the root tonoplast and sequestrates Cd into the root vacuole to reduce Cd translocation to the shoots and limit its accumulation in the seeds. In this study, the transient expression of the GmHMA3w-GFP fusion protein in rice mesophyll protoplasts indicated that the subcellular localization of GmHAM3w was in the endoplasmic reticulum (ER). Overexpression of GmHMA3w increased the Cd concentration in the roots, decreased the Cd concentration in the stems, and did not affect the Cd concentration in the leaves. Additionally, its overexpression did not alter the Cd concentration across the whole plant. These findings indicated that GmHMA3w does not influence the Cd uptake, but limits the translocation of Cd from the roots to the stems. GmHMA3w thus acts in metal transportation. Assessment of the subcellular distribution of Cd indicated that GmHMA3w facilitated transport of Cd from the cell wall fraction to the organelle fraction, and then sequestrated Cd into the root ER, thus limiting its translocation to the stems. Additionally, the results also suggested that the ER constitutes a site of particularly high Cd sensitively in plants.


Assuntos
Adenosina Trifosfatases/metabolismo , Cádmio/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfatases/genética , Transporte Biológico , Cádmio/análise , Retículo Endoplasmático/metabolismo , Expressão Gênica , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/metabolismo , Transporte Proteico , Glycine max/citologia , Glycine max/genética , Estresse Fisiológico
5.
Nat Plants ; 3(10): 814-824, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28947800

RESUMO

Acetyl-coenzyme A (acetyl-CoA) is a central metabolite and the acetyl source for protein acetylation, particularly histone acetylation that promotes gene expression. However, the effect of acetyl-CoA levels on histone acetylation status in plants remains unknown. Here, we show that malfunctioned cytosolic acetyl-CoA carboxylase1 (ACC1) in Arabidopsis leads to elevated levels of acetyl-CoA and promotes histone hyperacetylation predominantly at lysine 27 of histone H3 (H3K27). The increase of H3K27 acetylation (H3K27ac) is dependent on adenosine triphosphate (ATP)-citrate lyase which cleaves citrate to acetyl-CoA in the cytoplasm, and requires histone acetyltransferase GCN5. A comprehensive analysis of the transcriptome and metabolome in combination with the genome-wide H3K27ac profiles of acc1 mutants demonstrate the dynamic changes in H3K27ac, gene transcripts and metabolites occurring in the cell by the increased levels of acetyl-CoA. This study suggests that H3K27ac is an important link between cytosolic acetyl-CoA level and gene expression in response to the dynamic metabolic environments in plants.


Assuntos
Acetilcoenzima A/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Acetilação , Citosol/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Lisina/metabolismo
6.
ScientificWorldJournal ; 2014: 979750, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987750

RESUMO

Westag 97 has larger capacity of Cd accumulation in roots which prevents Cd from translocating into stems and leaves; conversely, AC Hime has smaller capacity of Cd accumulation in roots; more Cd is transported into stems and leaves. The different capacity of Cd in roots between Westag 97 and AC Hime causes the different Cd concentration in seeds. Meanwhile, according to the different expression levels of RSTK, ISCP, and H(+)-ATPase between Westag 97 and AC Hime, RSTK may be involved in transporting Cd into stems and leaves; H(+)-ATPase may be correlated to the capacity of Cd accumulation in roots; and Cd caused some changes of fundamental life process which leaded to the different expression patterns of ISCP between Westag 97 and AC Hime.


Assuntos
Cádmio/farmacologia , Genes de Plantas , Glycine max/efeitos dos fármacos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glycine max/genética , Glycine max/metabolismo
8.
Mol Biol Rep ; 39(2): 1585-94, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21625860

RESUMO

Accurate normalization of gene expression with qRT-PCR depends on the use of appropriate reference genes (RGs) for the species under a given set of experimental conditions. Multiple RGs for gene expression analysis of soybean exposed to heavy metal stress treatment have not been reported in the literature. In this study, we evaluated the expression stability of ten candidate RGs in leaves, roots and stems of two soybean cultivars exposed to cadmium (Cd). Based on the geNorm and NormFinder analysis, ACT3, PP2A, ELF1B and F-box were the most stable RGs in these gene expression studies. In contrast, G6PD, UBC2, TUB, and ELF1A were the most variable ones and should not be used as RGs in these experimental conditions.


Assuntos
Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Expressão Gênica , Genes de Plantas/genética , Glycine max/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Poluentes do Solo/toxicidade , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/normas , Glycine max/efeitos dos fármacos , Glycine max/metabolismo
9.
Theor Appl Genet ; 121(4): 651-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20390244

RESUMO

Phytophthora root rot (PRR) of soybean (Glycine max (L.) Merr.) is the second most important cause of yield loss by disease in North America, surpassed only by soybean cyst nematode (Wrather et al. in Can J Plant Pathol 23:115-121, 2001). Tolerance can provide economically useful disease control, conditioning partial resistance of soybean to PRR. The aims of this study were to identify new quantitative trait loci (QTL) underlying tolerance to PRR, and to evaluate the effects of pyramided or stacked loci on the level of tolerance. A North American cultivar 'Conrad' (tolerant to PRR) was crossed with a northeastern China cultivar 'Hefeng 25' (tolerant to PRR). Through single-seed descent, 140 F2:5 and F2:6 recombinant inbred lines were advanced. A total of 164 simple sequence repeat (SSR) markers were used to construct a genetic linkage map. The percentage of seedling death was measured over 2 years (2007 and 2008) in the field at four naturally infested locations in Canada and China following additional soil infestation and in the greenhouse following inoculation with Phytophthora sojae isolate. A total of eight QTL underlying tolerance to PRR were identified, located in five linkage groups (F, D1b+w, A2, B1, and C2). The phenotypic variation contributed by the loci ranged from 4.24 to 27.98%. QPRR-1 (anchored in the interval of SSR markers Satt325 and Satt343 of LG F), QPRR-2 (anchored in the interval of Satt005 and Satt600 of LG D1b+w), and QPRR-3 (anchored in the interval of Satt579 and Sat_089 of LG D1b+w) derived their beneficial allele from 'Conrad'. They were located at chromosomal locations known to underlie PRR tolerance in diverse germplasm. Five QTL that derived beneficial alleles from 'Hefeng 25' were identified. The QTL (QPRR-1 to QPRR-7) that were detected across at least three environments were selected for loci stacking and to analyze the relationship between number of tolerance loci and disease loss percentage. The accumulation of tolerance loci was positively correlated with decreases in disease loss percentage. The pyramid of loci underlying tolerance to PRR provided germplasm useful for crop improvement by marker-assisted selection and may provide durable cultivar tolerance against the PRR disease.


Assuntos
Adaptação Fisiológica/genética , Meio Ambiente , Glycine max/microbiologia , Phytophthora/fisiologia , Doenças das Plantas/genética , Raízes de Plantas/microbiologia , Locos de Características Quantitativas/genética , Alelos , Ligação Genética , Endogamia , Fenótipo , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Glycine max/genética
10.
Theor Appl Genet ; 121(2): 283-94, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20224890

RESUMO

Daily consumption of cadmium (Cd) contaminated foods poses a risk to human health. Cultivar selection is an important method to limit Cd uptake and accumulation; however, analyzing grain Cd concentration is costly and time-consuming. Developing markers for low Cd accumulation will facilitate marker assisted selection (MAS). Inheritance studies using a threshold value of 0.2 mg kg(-1) for low and high and an F(2:3) population showed that low Cd accumulation in soybean seed is under the control of a major gene (Cda1, proposed name) with the allele for low accumulation being dominant. A recombinant inbred line (RIL) population (F(6:8)) derived from the cross AC Hime (high Cd accumulation) and Westag-97 (low Cd accumulation) was used to identify the DNA markers linked to Cda gene(s) or quantitative trait loci (QTLs) controlling low Cd accumulation. We screened 171 simple sequence repeat (SSR) primers that showed polymorphism between parents on the 166 RILs. Of these, 40 primers were newly developed from the soybean genomic DNA sequence. Seven SSR markers, SatK138, SatK139, SatK140 (0.5 cM), SatK147, SacK149, SaatK150 and SattK152 (0.3 cM), were linked to Cda1 in soybean seed. All the linked markers were mapped to the same linkage group (LG) K. The closest flanking SSR markers linked to Cda1 were validated using a parallel population (RILs) involving Leo x Westag-97. Linked markers were also validated with diverse soybean genotypes differing in their seed Cd concentration and showed that SSR markers SatK147, SacK149, and SattK152 clearly differentiated the high and low Cd accumulating genotypes tested. To treat Cd uptake as a quantitative trait, QTL analysis using a linkage map constructed with 161 markers identified a major QTL associated with low Cd concentration in the seeds. The QTL was also mapped to the same location as Cda1 on LG-K. This QTL accounted for 57.3% of the phenotypic variation. Potential candidate genes (genes with known or predicted function that could influence the seed Cd concentration) like protein kinase, putative Adagio-like protein, and plasma membrane H(+)-ATPase were found to be located in the locus of interest. Of the four SSR markers located in the region, SattK152 was localized in the plasma membrane H(+)-ATPase gene. SSR markers closely linked to Cda1 in seeds of soybean were identified and have potential to be used for MAS to develop low Cd accumulating cultivars in a breeding program.


Assuntos
Cádmio/metabolismo , Marcadores Genéticos , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Repetições Minissatélites/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Cádmio/análise , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Genes de Plantas , Ligação Genética , Imunidade Inata/genética , Locos de Características Quantitativas
11.
Genet. mol. biol ; 28(3): 440-443, July-Sept. 2005. ilus
Artigo em Inglês | LILACS | ID: lil-416325

RESUMO

Functional properties of soy proteins for food are closely related to the composition of their storage protein subunits. Using base excision sequence scanning (BESS), we show that the absence of the A4 peptide in the G4 glycinin subunit of the soybean (Glycine max L.) cultivar Enrei was caused by the same point mutation in the Gy4 gene as previously reported in the soybean cultivar Raiden. Although the genetic relationship between Raiden and Enrei is not known, the same point mutation in their Gy4 genes may indicate that they probably share a related origin. The application of BESS to identify single nucleotide polymorphisms (SNPs) as co-dominant markers for marker-assisted selection (MAS) of a recessive null allele is also discussed.


Assuntos
Sequência de Bases , Glycine max/genética , Proteínas de Plantas , Polimorfismo de Nucleotídeo Único , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA