Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Hazard Mater ; 476: 134772, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38901254

RESUMO

Bisphenol A (BPA) and its analogues (BPAF, BPS) are ubiquitous environmental contaminants used as plastic additives in various daily life products, with many concerns on their role as environmental estrogens. Uterine leiomyomas (fibroids) are highly prevalent gynecologic tumors with progressive fibrosis. Fibroids are hormone-responsive and may be the target of environmental estrogens. However, the effects of BPA, BPAF, and BPS exposure on uterine fibrosis are largely unknown. Here, we evaluated fibrosis and the crucial role of TGF-beta signaling in human fibroid tumors, the profibrotic effects of BPA, BPAF or BPS in a human 3D uterine leiomyoma (ht-UtLM) in vitro model, and the long-term outcomes of BPAF exposure in rat uterus. In 3D ht-UtLM spheroids, BPA, BPAF, and BPS all promoted cell proliferation and fibrosis by increasing the production of extracellular matrices. Further mechanistic analysis showed the profibrotic effects were induced by TGF-beta signaling activation mainly through SMAD2/3 pathway and crosstalk with multiple non-SMAD pathways. Furthermore, the profibrotic effects of BPAF were supported by observation of uterine fibrosis in vivo in rats following long-term BPAF exposure. Overall, the 3D ht-UtLM spheroid can be an important model for investigating environment-induced fibrosis in uterine fibroids. BPA and its analogues can induce fibrosis via TGF-beta signaling.


Assuntos
Compostos Benzidrílicos , Fibrose , Leiomioma , Fenóis , Fator de Crescimento Transformador beta , Neoplasias Uterinas , Feminino , Leiomioma/induzido quimicamente , Leiomioma/patologia , Leiomioma/metabolismo , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Humanos , Animais , Fibrose/induzido quimicamente , Neoplasias Uterinas/induzido quimicamente , Neoplasias Uterinas/patologia , Fator de Crescimento Transformador beta/metabolismo , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/patologia , Útero/metabolismo , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732119

RESUMO

High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette smoke condensate (CSC; 3R4F) on human ectocervical cells (HPV-16 Ect/E6E7) exposed to CSC at various concentrations (10-6-100 µg/mL). We found CSC (10-3 or 10 µg/mL)-induced proliferation, enhanced migration, and histologic and electron microscopic changes consistent with EMT in ectocervical cells with a significant reduction in E-cadherin and an increase in the vimentin expression compared to controls at 72 h. There was increased phosphorylation of receptor tyrosine kinases (RTKs), including Eph receptors, FGFR, PDGFRA/B, and DDR2, with downstream Ras/MAPK/ERK1/2 activation and upregulation of common EMT-related genes, TGFB SNAI2, PDGFRB, and SMAD2. Our study demonstrated that CSC induces EMT in ectocervical cells with the upregulation of EMT-related genes, expression of protein biomarkers, and activation of RTKs that regulate TGFB expression, and other EMT-related genes. Understanding the molecular pathways and environmental factors that initiate EMT in ectocervical cells will help delineate molecular targets for intervention and define the role of EMT in the initiation and progression of cervical intraepithelial neoplasia and CC.


Assuntos
Células Epiteliais , Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Fator de Crescimento Transformador beta/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Células Epiteliais/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Colo do Útero/patologia , Colo do Útero/metabolismo , Colo do Útero/virologia , Fumaça/efeitos adversos , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/patologia , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/etiologia , Papillomavirus Humano 16/patogenicidade , Nicotiana/efeitos adversos , Papillomavirus Humano
3.
J Med Chem ; 66(14): 9684-9696, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37413981

RESUMO

Irinotecan (1), a prodrug of SN38 (2) approved by the US Food and Drug Administration for treating colorectal cancer, lacks specificity and causes many side effects. To increase the selectivity and therapeutic efficacy of this drug, we designed and synthesized conjugates of SN38 and glucose transporter inhibitors (phlorizin (5) or phloretin (6)), which could be hydrolyzed by glutathione or cathepsin to release SN38 in the tumor microenvironment, as a proof of concept. These conjugates (8, 9, and 10) displayed better antitumor efficacy with lower systemic exposure to SN38 in an orthotopic colorectal cancer mouse model compared with irinotecan at the same dosage. Further, no major adverse effects of the conjugates were observed during treatment. Biodistribution studies showed that conjugate 10 could induce higher concentrations of free SN38 in tumor tissues than irinotecan at the same dosage. Thus, the developed conjugates exhibit potential for treating colorectal cancer.


Assuntos
Neoplasias Colorretais , Pró-Fármacos , Camundongos , Animais , Irinotecano , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Distribuição Tecidual , Pró-Fármacos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Biochim Biophys Acta Bioenerg ; 1864(2): 148957, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709837

RESUMO

The electron transfer reactions within wild-type Rhodobacter sphaeroides cytochrome bc1 (cyt bc1) were studied using a binuclear ruthenium complex to rapidly photooxidize cyt c1. When cyt c1, the iron­sulfur center Fe2S2, and cyt bH were reduced before the reaction, photooxidation of cyt c1 led to electron transfer from Fe2S2 to cyt c1 with a rate constant of ka = 80,000 s-1, followed by bifurcated reduction of both Fe2S2 and cyt bL by QH2 in the Qo site with a rate constant of k2 = 3000 s-1. The resulting Q then traveled from the Qo site to the Qi site and oxidized one equivalent each of cyt bL and cyt bH with a rate constant of k3 = 340 s-1. The rate constant ka was decreased in a nonlinear fashion by a factor of 53 as the viscosity was increased to 13.7. A mechanism that is consistent with the effect of viscosity involves rotational diffusion of the iron­sulfur protein from the b state with reduced Fe2S2 close to cyt bL to one or more intermediate states, followed by rotation to the final c1 state with Fe2S2 close to cyt c1, and rapid electron transfer to cyt c1.


Assuntos
Citocromos b , Proteínas Ferro-Enxofre , Citocromos b/metabolismo , Oxirredução , Citocromos c/metabolismo , Citocromos c1/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Rotação , Elétrons
5.
Oncology ; 100(10): 555-568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35850102

RESUMO

BACKGROUND: Altered glucose metabolism is associated with chemoresistance in colorectal cancer (CRC). This study aimed to illustrate the molecular mechanisms of glucose-mediated chemoresistance against irinotecan, a topoisomerase I inhibitor, focusing on the distinct roles of metabolites such as pyruvate and ATP in modulating cell death and proliferation. METHODS: Four human CRC cell lines, tumorspheres, and mouse xenograft models were treated with various doses of irinotecan in the presence of various concentrations of glucose, pyruvate, or ATP-encapsulated liposomes. RESULTS: In this study, human CRC cell lines treated with irinotecan in high glucose displayed increased cell viability and larger xenograft tumor sizes in mouse models compared to those treated in normal glucose concentrations. Irinotecan induced apoptosis and necroptosis, both mitigated by high glucose. Liposomal ATP prevented irinotecan-induced apoptosis, while it did not affect necroptosis. In contrast, pyruvate attenuated the receptor-interacting protein kinase 1/3-dependent necroptosis via free radical scavenging without modulating apoptotic levels. Regarding the cell cycle, liposomal ATP aggravated the irinotecan-induced G0/G1 shift, whereas pyruvate diminished the G0/G1 shift, showing opposite effects on proliferation. Last, tumorsphere structural damage, an index of solid tumor responsiveness to chemotherapy, was determined. Liposomal ATP increased tumorsphere size while pyruvate prevented the deformation of spheroid mass. CONCLUSIONS: Glucose metabolites confer tumor chemoresistance via multiple modes of action. Glycolytic pyruvate attenuated irinotecan-induced necroptosis and potentiated drug insensitivity by shifting cells from a proliferative to a quiescent state. On the other hand, ATP decreased irinotecan-induced apoptosis and promoted active cell proliferation, contributing to tumor recurrence. Our findings challenged the traditional view of ATP as the main factor for irinotecan chemoresistance and provided novel insights of pyruvate acting as an antioxidant responsible for drug insensitivity, which may shed light on the development of new therapies against recalcitrant cancers.


Assuntos
Neoplasias Colorretais , Glucose , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Radicais Livres/farmacologia , Radicais Livres/uso terapêutico , Glucose/metabolismo , Glucose/farmacologia , Glucose/uso terapêutico , Humanos , Irinotecano/farmacologia , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Quinases/farmacologia , Proteínas Quinases/uso terapêutico , Ácido Pirúvico/farmacologia , Ácido Pirúvico/uso terapêutico , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico
6.
Lab Invest ; 102(9): 1023-1037, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35585132

RESUMO

Irritable bowel syndrome (IBS) is characterized by visceral hypersensitivity (VH) associated with abnormal serotonin/5-hydroxytryptamine (5-HT) metabolism and neurotrophin-dependent mucosal neurite outgrowth. The underlying mechanisms of VH remain poorly understood. We investigated the role of 5-HT7 receptor in mucosal innervation and intestinal hyperalgesia. A high density of mucosal nerve fibres stained for 5-HT7 was observed in colonoscopic biopsy specimens from IBS patients compared with those from healthy controls. Staining of 5-HT3 and 5-HT4 receptors was observed mainly in colonic epithelia with comparable levels between IBS and controls. Visceromotor responses to colorectal distension were evaluated in two mouse models, one postinfectious with Giardia and subjected to water avoidance stress (GW) and the other postinflammatory with trinitrobenzene sulfonic acid-induced colitis (PT). Increased VH was associated with higher mucosal density of 5-HT7-expressing nerve fibres and elevated neurotrophin and neurotrophin receptor levels in the GW and PT mice. The increased VH was inhibited by intraperitoneal injection of SB-269970 (a selective 5-HT7 antagonist). Peroral multiple doses of CYY1005 (a novel 5-HT7 ligand) decreased VH and reduced mucosal density of 5-HT7-expressing nerve fibres in mouse colon. Human neuroblastoma SH-SY5Y cells incubated with bacteria-free mouse colonic supernatant, 5-HT, nerve growth factor, or brain-derived neurotrophic factor exhibited nerve fibre elongation, which was inhibited by 5-HT7 antagonists. Gene silencing of HTR7 also reduced the nerve fibre length. Activation of 5-HT7 upregulated NGF and BDNF gene expression, while stimulation with neurotrophins increased the levels of tryptophan hydroxylase 2 and 5-HT7 in neurons. A positive-feedback loop was observed between serotonin and neurotrophin pathways via 5-HT7 activation to aggravate fibre elongation, whereby 5-HT3 and 5-HT4 had no roles. In conclusion, 5-HT7-dependent mucosal neurite outgrowth contributed to VH. A novel 5-HT7 antagonist could be used as peroral analgesics for IBS-related pain.


Assuntos
Síndrome do Intestino Irritável , Neuroblastoma , Animais , Humanos , Mucosa Intestinal , Camundongos , Crescimento Neuronal , Serotonina
7.
Biomedicines ; 10(4)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35453667

RESUMO

Cadmium (Cd) is one of the most prevalent environmental heavy metal contaminants and is considered an endocrine disruptor and carcinogen. In women with uterine fibroids, there is a correlation between blood Cd levels and fibroid tumor size. In this study, fibroid cells were exposed to 10 µM CdCl2 for 6 months and a fast-growing Cd-Resistant Leiomyoma culture, termed CR-LM6, was recovered. To characterize the morphological and mechanodynamic features of uterine fibroid cells associated with prolonged Cd exposure, we conducted time lapse imaging using a Zeiss confocal microscope and analyzed data by Imaris and RStudio. Our experiments recorded more than 64,000 trackable nuclear surface objects, with each having multiple parameters such as nuclear size and shape, speed, location, orientation, track length, and track straightness. Quantitative analysis revealed that prolonged Cd exposure significantly altered cell migration behavior, such as increased track length and reduced track straightness. Cd exposure also significantly increased the heterogeneity in nuclear size. Additionally, Cd significantly increased the median and variance of instantaneous speed, indicating that Cd exposure results in higher speed and greater variation in motility. Profiling of mRNA by NanoString analysis and Ingenuity Pathway Analysis (IPA) strongly suggested that the direction of gene expression changes due to Cd exposure enhanced cell movement and invasion. The altered expression of extracellular matrix (ECM) genes such as collagens, matrix metallopeptidases (MMPs), secreted phosphoprotein 1 (SPP1), which are important for migration contact guidance, may be responsible for the greater heterogeneity. The significantly increased heterogeneity of nuclear size, speed, and altered migration patterns may be a prerequisite for fibroid cells to attain characteristics favorable for cancer progression, invasion, and metastasis.

8.
FASEB J ; 36(2): e22101, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032343

RESUMO

Tetrabromobisphenol A (TBBPA), a derivative of BPA, is a ubiquitous environmental contaminant with weak estrogenic properties. In women, uterine fibroids are highly prevalent estrogen-responsive tumors often with excessive accumulation of extracellular matrix (ECM) and may be the target of environmental estrogens. We have found that BPA has profibrotic effects in vitro, in addition to previous reports of the in vivo fibrotic effects of BPA in mouse uterus. However, the role of TBBPA in fibrosis is unclear. To investigate the effects of TBBPA on uterine fibrosis, we developed a 3D human uterine leiomyoma (ht-UtLM) spheroid culture model. Cell proliferation was evaluated in 3D ht-UtLM spheroids following TBBPA (10-6 -200 µM) administration at 48 h. Fibrosis was assessed using a Masson's Trichrome stain and light microscopy at 7 days of TBBPA (10-3  µM) treatment. Differential expression of ECM and fibrosis genes were determined using RT² Profiler™ PCR arrays. Network and pathway analyses were conducted using Ingenuity Pathway Analysis. The activation of pathway proteins was analyzed by a transforming growth factor-beta (TGFB) protein array. We found that TBBPA increased cell proliferation and promoted fibrosis in 3D ht-UtLM spheroids with increased deposition of collagens. TBBPA upregulated the expression of profibrotic genes and corresponding proteins associated with the TGFB pathway. TBBPA activated TGFB signaling through phosphorylation of TGFBR1 and downstream effectors-small mothers against decapentaplegic -2 and -3 proteins (SMAD2 and SMAD3). The 3D ht-UtLM spheroid model is an effective system for studying environmental agents on human uterine fibrosis. TBBPA can promote fibrosis in uterine fibroid through TGFB/SMAD signaling.


Assuntos
Fibrose/induzido quimicamente , Fibrose/metabolismo , Leiomioma/induzido quimicamente , Bifenil Polibromatos/administração & dosagem , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Uterinas/induzido quimicamente , Neoplasias Uterinas/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos , Proliferação de Células/efeitos dos fármacos , Estrogênios/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Humanos , Leiomioma/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Cell Mol Gastroenterol Hepatol ; 13(1): 57-79, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34418587

RESUMO

BACKGROUND & AIMS: Microbiota dysbiosis and mucosa-associated bacteria are involved in colorectal cancer progression. We hypothesize that an interaction between virulent pathobionts and epithelial defense promotes tumorigenesis. METHODS: Chemical-induced CRC mouse model was treated with antibiotics at various phases. Colonic tissues and fecal samples were collected in a time-serial mode and analyzed by gene microarray and 16S rRNA sequencing. Intraepithelial bacteria were isolated using a gentamicin resistance assay, and challenged in epithelial cultures. RESULTS: Our study showed that antibiotic treatment at midphase but not early or late phase reduced mouse tumor burden, suggesting a time-specific host-microbe interplay. A unique antimicrobial transcriptome profile showing an inverse relationship between autophagy and oxidative stress genes was correlated with a transient surge in microbial diversity and virulence emergence in mouse stool during cancer initiation. Gavage with fimA/fimH/htrA-expressing invasive Escherichia coli isolated from colonocytes increased tumor burden in recipient mice, whereas inoculation of bacteria deleted of htrA or triple genes did not. The invasive E.coli suppressed epithelial autophagy activity through reduction of microtubule-associated protein 1 light-chain 3 transcripts and caused dual oxidase 2-dependent free radical overproduction and tumor cell hyperproliferation. A novel alternating spheroid culture model was developed for sequential bacterial challenge to address the long-term changes in host-microbe interaction for chronic tumor growth. Epithelial cells with single bacterial encounter showed a reduction in transcript levels of autophagy genes while those sequentially challenged with invasive E.coli showed heightened autophagy gene expression to eliminate intracellular microbes, implicating that bacteria-dependent cell hyperproliferation could be terminated at late phases. Finally, the presence of bacterial htrA and altered antimicrobial gene expression were observed in human colorectal cancer specimens. CONCLUSIONS: Invasive pathobionts contribute to cancer initiation during a key time frame by counterbalancing autophagy and oxidative stress in the colonic epithelium. Monitoring gut microbiota and antimicrobial patterns may help identify the window of opportunity for intervention with bacterium-targeted precision medicine.


Assuntos
Neoplasias do Colo , Animais , Antibacterianos/farmacologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Disbiose/microbiologia , Camundongos , RNA Ribossômico 16S
10.
Carcinogenesis ; 42(7): 961-974, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34000008

RESUMO

Myosin light chain kinase (MLCK) regulates actinomyosin contraction. Two splice variants of long MLCK are expressed in epithelial cells and divergently regulate gut barrier functions; reduced MLCK levels in human colorectal cancers (CRC) with unclarified significance have been reported. CRC are solid tumors clonally sustained by stem cells highly expressing CD44 and CD133. The aim was to investigate the role of MLCK splice variants in CRC tumorigenesis. We found lower MLCK1/2 and higher CD44 expression in human CRC, but no change in CD133 or LGR5. Large-scale bioinformatics showed an inverse relationship between MYLK and CD44 in human sample gene datasets. A 3-fold increased tumor burden was observed in MLCK(-/-) mice compared with wild-type (WT) mice in a chemical-induced CRC model. Primary tumorspheres derived from the MLCK(-/-) mice displayed larger sizes and higher CD44 transcript levels than those from the WT mice. Bioinformatics revealed binding of TEAD4 (a transcriptional enhancer factor family member in the Hippo pathway) to CD44 promoter, which was confirmed by luciferase reporter assay. Individually expressing MLCK1 and MLCK2 variants in the MLCK-knockout (KO) Caco-2 cells inhibited the nuclear localization of TEAD4 cofactors, VGLL3 and YAP1, respectively, and both variants reduced the CD44 transcription. Accelerated cell cycle transit was observed in the MLCK-KO cells, whereby expression of MLCK1/2 variants counterbalanced the cell hyperproliferation. In conclusion, MLCK1/2 variants are novel tumor suppressors by downregulating the TEAD4/CD44 axis via reducing nuclear translocation of distinct transcriptional coactivators. The reduction of epithelial MLCKs, especially isoform 2, may drive cancer stemness and tumorigenesis.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/metabolismo , Proteínas Musculares/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Receptores de Hialuronatos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/genética , Fosforilação , Prognóstico , Taxa de Sobrevida , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
11.
Arch Toxicol ; 95(6): 1995-2006, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33818655

RESUMO

Cadmium (Cd) is a toxic metal reported to act as an estrogen "mimic" in the rat uterus and in vitro. We have reported that Cd stimulates proliferation of estrogen-responsive human uterine leiomyoma (ht-UtLM; fibroid) cells through nongenomic signaling involving the G protein-coupled estrogen receptor (GPER), with activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (pMAPK44/42). In this study, we explored Cd-induced mechanisms downstream of MAPK and whether Cd could stimulate phosphorylation of Histone H3 at serine 10 (H3Ser10ph) through activated Aurora B kinase (pAurora B), a kinase important in activation of histone H3 at serine 10 during mitosis, and if this occurs via Fork head box M1 (FOXM1) and cyclin D1 immediately downstream of MAPK. We found that Cd increased proliferating cell nuclear antigen (PCNA) and H3Ser10ph expression by immunofluorescence, and that H3ser10ph and pAurora B were coexpressed along the metaphase plate in ht-UtLM cells. In addition, Cd-exposed cells showed higher expression of pMAPK44/42, FOXM1, pAurora B, H3ser10ph, and Cyclin D1 by western blotting. Immunoprecipitation and proximity ligation assays further indicated an association between FOXM1 and Cyclin D1 in Cd-exposed cells. These effects were attenuated by MAPK kinase (MEK1/2) inhibitor. In summary, Cd-induced proliferation of ht-UtLM cells occurred through activation of Histone H3 and Aurora B via FOXM1/Cyclin D1 interactions downstream of MAPK. This provides a molecular mechanism of how Cd acts as an "estrogen mimic" resulting in mitosis in hormonally responsive cells.


Assuntos
Cádmio/toxicidade , Leiomioma/metabolismo , Mitose/efeitos dos fármacos , Neoplasias Uterinas/metabolismo , Aurora Quinase B/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ciclina D1/metabolismo , Feminino , Proteína Forkhead Box M1/metabolismo , Histonas/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
J Med Chem ; 64(8): 4450-4461, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33819035

RESUMO

Overexpression of glucose transporters (GLUTs) in colorectal cancer cells is associated with 5-fluorouracil (1, 5-FU) resistance and poor clinical outcomes. We designed and synthesized a novel GLUT-targeting drug conjugate, triggered by glutathione in the tumor microenvironment, that releases 5-FU and GLUTs inhibitor (phlorizin (2) and phloretin (3)). Using an orthotopic colorectal cancer mice model, we showed that the conjugate exhibited better antitumor efficacy than 5-FU, with much lower exposure of 5-FU during treatment and without significant side effects. Our study establishes a GLUT-targeting theranostic incorporating a disulfide linker between the targeting module and cytotoxic payload as a potential antitumor therapy.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Estabilidade de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Fluoruracila/uso terapêutico , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Meia-Vida , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Floretina/química , Floretina/metabolismo , Floretina/uso terapêutico , Florizina/química , Florizina/metabolismo , Florizina/uso terapêutico , Relação Estrutura-Atividade , Distribuição Tecidual
13.
Food Funct ; 12(4): 1639-1650, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481975

RESUMO

The fungal immunomodulatory protein Ling Zhi-8 (LZ-8) isolated from Ganoderma lucidum (GL) regulates immune cells and inhibits tumor growth; however, the role of LZ-8 in protecting intestinal epithelial cells (IECs) is unknown. In this study, we aim to investigate the functional effect of LZ-8 on IECs. LZ-8 effectively rescued the pro-inflammatory cytokine-induced loss of tight junctions (TJs) by enhancing transepithelial electrical resistance (TEER), reducing permeability, and maintaining the distribution of TJ proteins, in Caco-2 cells. Mechanistically, LZ-8 blocked the upregulation of myosin light chain kinase (MLCK) and NF-kB activation by TLR2-mediated suppression of cytokine signaling (SOCS)-1 expression. Furthermore, LZ-8 pre-treatment reduced the pathological scores of dextran sulfate sodium (DSS)-induced colitis in mice. These results indicated that LZ-8 protected the barrier function of IECs against inflammation. Thus, LZ-8 may potentially be a novel candidate for treating inflammatory bowel disease (IBD).


Assuntos
Colite , Sulfato de Dextrana/efeitos adversos , Proteínas Fúngicas/farmacologia , Mucosa Intestinal , Substâncias Protetoras/farmacologia , Animais , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Colite/induzido quimicamente , Colite/metabolismo , Células Epiteliais/efeitos dos fármacos , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Junções Íntimas/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-35071781

RESUMO

Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that induces endometrial adenocarcinoma and other uterine tumors in Wistar Han rats; however, early molecular events or biomarkers of TBBPA exposure remain unknown. We investigated the effects of TBBPA on growth factor receptor activation (phospho-RTK) in uteri of rats following early-life exposures. Pregnant Wistar Han rats were exposed to TBBPA (0, 0.1, 25, 250 mg/kg/day) via oral gavage on gestation day 6 through weaning of pups (PND 21). Pups were exposed in utero, through lactation, and by daily gavage from PND 22 to PND 90. Uterine horns were collected (at PND 21, PND 33, PND 90) and formalin-fixed or frozen for histologic, immunohistochemical, phospho-RTK arrays, or western blot analysis. At PND 21, the phosphor-RTKs, FGFR2, FGFR3, TRKC and EPHA1 were significantly increased at different treatment concentrations. Several phospho-RTKs were also significantly overexpressed at PND 33 which included epithelial growth factor receptor (EGFR), Fibroblast Growth Factor Receptor 3-4 (FGFR2, FGFR3, FGFR4), insulin-like growth factor receptor 1 (IGF1R), INSR, AXL, MERTK, PDGFRa and b, RET, Tyrosine Kinase with Immunoglobulin Like and EGF Like Domains 1 and 2 (TIE1; TIE2), TRKA, VEGFR2 and 3, and EPHA1 at different dose treatments. EGFR, an RTK overexpressed in endometrial cancer in women, remained significantly increased for all treatment groups at PND 90. Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2) and IGF1R were overexpressed at PND 33 and remained increased through PND 90, although ERBB2 was statistically significant at PND 90. The phospho-RTKs, FGFR3, AXL, DTK, HGFR, TRKC, VEGFR1 and EPHB2 and 4 were also statistically significant at PND 90 at different dose treatments. The downstream effector, phospho-MAPK44/42 was also increased in uteri of treated rats. Our findings show RTKs are dysregulated following early life TBBPA exposures and their sustained activation may contribute to TBBPA-induced uterine tumors observed in rats later in life.

15.
J Crohns Colitis ; 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770194

RESUMO

Inflammatory bowel disease (IBD) is characterized by abnormal host-microbe interactions. Proinflammatory cytokine IFNγ and a novel TNF superfamily member, TL1A, have been implicated in epithelial barrier dysfunction. The divergent regulatory mechanisms of transcellular versus paracellular hyperpermeability remain poorly understood. Intestinal epithelia express two splice variants of long myosin light chain kinase (MLCK), of which the full-length MLCK1 differ from the shorter isoform MLCK2 by a Src kinase phosphorylation site. The aim was to investigate the roles of MLCK splice variants in gut barrier defects under proinflammatory stress. Upregulated expression of TL1A, IFNγ, and two MLCK variants was observed in human IBD biopsy specimens. The presence of intraepithelial bacteria preceded tight junction (TJ) damage in dextran sodium sulfate-treated and TL1A-transgenic mouse models. Lack of barrier defects was observed in long MLCK(-/-) mice. TL1A induced MLCK-dependent terminal web (TW) contraction, brush border fanning, and transepithelial bacterial internalization. The bacterial taxa identified in the inflamed colonocytes included Escherichia, Enterococcus, Staphylococcus,and Lactobacillus. Recombinant TL1A and IFNγ at low doses induced PI3K/Akt/MLCK2-dependent bacterial endocytosis, whereas high-dose IFNγ caused TJ opening via the iNOS/Src/MLCK1 axis. Bacterial internalization was recapitulated in MLCK-knockout cells individually expressing MLCK2 but not MLCK1. Immunostaining showed different subcellular sites of phosphorylated MLC localized to the TJ and TW in the MLCK1- and MLCK2-expressing cells, respectively. In conclusion, proinflammatory cytokines induced bacterial influx through transcellular and paracellular routes via divergent pathways orchestrated by distinct MLCK isoforms. Bacterial transcytosis induced by TL1A may be an alternative route causing symptom flares in IBD.

16.
Chin J Physiol ; 63(1): 7-14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32056981

RESUMO

Chronic inflammation is a major risk factor for colitis-associated colorectal carcinoma (CRC). Macrophages play a key role in altering the tumor microenvironment by producing pro-inflammatory and anti-inflammatory cytokines. Our previous studies showed that glucose metabolism conferred death resistance for tumor progression and exerted anti-inflammatory effects in ischemic gut mucosa. However, the effect of glucose and cancer metabolites in modulating macrophage cytokine profiles remains poorly defined. We used an in vitro system to mimic intestinal microenvironment and to investigate the roles of glucose and cancer metabolites in the cross-talk between carcinoma cells and macrophages. Human monocyte-derived THP-1 macrophages were stimulated with bacterial lipopolysaccharide (LPS) in the presence of conditioned media (CM) collected from human CRC Caco-2 cells incubated in either glucose-free or glucose-containing media. Our results demonstrated that glucose modulated the macrophage cytokine production, including decreased LPS-induced pro-inflammatory cytokines (i.e., tumor necrosis factor [TNF]α and interleukin [IL]-6) and increased anti-inflammatory cytokine (i.e., IL-10), at resting state. Moreover, glucose-containing CM reduced the macrophage secretion of TNFα and IL-8 but elevated the IL-12 and IL-23 levels, showing an opposite pattern of distinct pro-inflammatory cytokines modulated by cancer glucose metabolites. In contrast, LPS-induced production of macrophage inflammatory protein-1 (a macrophage-derived chemoattractant for granulocytes) was not altered by glucose or CM, indicating that resident macrophages may play a more dominant role than infiltrating granulocytes for responding to cancer metabolites. In conclusion, glucose metabolites from CRC triggered distinct changes in the cytokine profiles in macrophages. The downregulation of death-inducing TNFα and upregulation of Th1/17-polarizing IL-12/IL-23 axis in macrophages caused by exposure to cancer-derived glucose metabolites may contribute to tumor progression.


Assuntos
Neoplasias do Colo , Células CACO-2 , Citocinas , Glucose , Humanos , Interleucina-12 , Interleucina-23 , Lipopolissacarídeos , Macrófagos , Microambiente Tumoral , Fator de Necrose Tumoral alfa
17.
Front Oncol ; 9: 1282, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824857

RESUMO

Reprogrammed glucose metabolism and increased glycolysis have been implicated in tumor chemoresistance. The aim was to investigate the distinct roles of the glucose metabolites pyruvate and ATP in chemoresistance mechanisms, including cell death and proliferation. Our data showed higher glucose transporters in colorectal cancer (CRC) from non-responsive patients than those responsive to chemotherapy. Human CRC cell lines exposed to 5-fluorouracil (5-FU) displayed elevated cell viability and larger tumors in xenograft mouse models if cultured in high-glucose medium. Glucose conferred resistance to 5-FU-induced necroptosis via pyruvate scavenging of mitochondrial free radicals, whereas ATP replenishment had no effect on cell death. Glucose attenuated the 5-FU-induced G0/G1 shift but not the S phase arrest. Opposing effects were observed by glucose metabolites; ATP increased while pyruvate decreased the G0/G1 shift. Lastly, 5-FU-induced tumor spheroid destruction was prevented by glucose and pyruvate, but not by ATP. Our finding argues against ATP as the main effector for glucose-mediated chemoresistance and supports a key role of glycolytic pyruvate as an antioxidant for dual modes of action: necroptosis reduction and a cell cycle shift to a quiescent state.

18.
Arch Toxicol ; 93(10): 2773-2785, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31468104

RESUMO

Cadmium (Cd) is a ubiquitous environmental metal that is reported to be a "metalloestrogen." Uterine leiomyomas (fibroids) are estrogen-responsive gynecologic neoplasms that can be the target of xenoestrogens. Previous epidemiology studies have suggested Cd may be associated with fibroids. We have shown that Cd can stimulate proliferation of human uterine leiomyoma (ht-UtLM) cells, but not through classical estrogen receptor (ER) binding. Whether nongenomic ER pathways are involved in Cd-induced proliferation is unknown. In the present study, by evaluating G protein-coupled estrogen receptor (GPER), ERα36, and phospho-epidermal growth factor receptor (EGFR) expression in human tissues, we found that GPER, ERα36 and phospho-EGFR were all highly expressed in fibroids compared to patient-matched myometrial tissues. In ht-UtLM cells, cell proliferation was increased by low doses of Cd (0.1 µM and 10 µM), and this effect could be inhibited by GPER-specific antagonist (G15) pretreatment, or silencing (si) GPER, but not by siERα36. Cd-activated MAPK was dependent on GPER/EGFR transactivation, through significantly increased phospho-Src, matrix metalloproteinase-2 (MMP2) and MMP9, and heparin-binding EGF-like growth factor (HB-EGF) expression/activation. Also, phospho-Src could interact directly to phosphorylate EGFR. Overall, Cd-induced proliferation of human fibroid cells was through a nongenomic GPER/p-src/EGFR/MAPK signaling pathway that did not directly involve ERα36. This suggests that Cd may be a risk factor for uterine fibroids through cross talk between hormone and growth factor receptor pathways.


Assuntos
Cloreto de Cádmio/toxicidade , Proliferação de Células/efeitos dos fármacos , Leiomioma/patologia , Neoplasias Uterinas/patologia , Adulto , Cloreto de Cádmio/administração & dosagem , Relação Dose-Resposta a Droga , Receptores ErbB/genética , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Leiomioma/induzido quimicamente , Leiomioma/genética , Pessoa de Meia-Idade , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias Uterinas/induzido quimicamente , Neoplasias Uterinas/genética
19.
Mol Cell Endocrinol ; 484: 59-68, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30615907

RESUMO

The role of ERα36 in regulating BPA's effects and its potential as a risk factor for human uterine fibroids were evaluated. BPA at low concentrations (10-6 µM - 10 µM) increased proliferation by facilitating progression of hormonally regulated, immortalized human uterine leiomyoma (ht-UtLM; fibroid) cells from G0-G1 into S phase of the cell cycle; whereas, higher concentrations (100 µM-200 µM) decreased growth. BPA upregulated ERα36 gene and protein expression, and induced increased SOS1 and Grb2 protein expression, both of which are mediators of the MAPKp44/42/ERK1/2 pathway. EGFR (pEGFR), Ras, and MAPKp44/42 were phosphorylated with concurrent Src activation in ht-UtLM cells within 10 min of BPA exposure. BPA enhanced colocalization of phosphorylated Src (pSrc) to ERα36 and coimmunoprecipitation of pSrc with pEGFR. Silencing ERα36 with siERα36 abolished the above effects. BPA induced proliferation in ht-UtLM cells through membrane-associated ERα36 with activation of Src, EGFR, Ras, and MAPK nongenomic signaling pathways.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Leiomioma/metabolismo , Fenóis/efeitos adversos , Compostos Benzidrílicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Proteína Adaptadora GRB2/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Leiomioma/induzido quimicamente , Leiomioma/genética , Fenóis/farmacologia , Fosforilação , Proteína SOS1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
20.
J Biomed Sci ; 25(1): 79, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413188

RESUMO

Inflammatory bowel disease (IBD) is a multifactorial disease which arises as a result of the interaction of genetic, environmental, barrier and microbial factors leading to chronic inflammation in the intestine. Patients with IBD had a higher risk of developing colorectal carcinoma (CRC), of which the subset was classified as colitis-associated cancers. Genetic polymorphism of innate immune receptors had long been considered a major risk factor for IBD, and the mutations were also recently observed in CRC. Altered microbial composition (termed microbiota dybiosis) and dysfunctional gut barrier manifested by epithelial hyperpermeability and high amount of mucosa-associated bacteria were observed in IBD and CRC patients. The findings suggested that aberrant immune responses to penetrating commensal microbes may play key roles in fueling disease progression. Accumulative evidence demonstrated that mucosa-associated bacteria harbored colitogenic and protumoral properties in experimental models, supporting an active role of bacteria as pathobionts (commensal-derived opportunistic pathogens). Nevertheless, the host factors involved in bacterial dysbiosis and conversion mechanisms from lumen-dwelling commensals to mucosal pathobionts remain unclear. Based on the observation of gut leakiness in patients and the evidence of epithelial hyperpermeability prior to the onset of mucosal histopathology in colitic animals, it was postulated that the epithelial barrier dysfunction associated with mucosal enrichment of specific bacterial strains may predispose the shift to disease-associated microbiota. The speculation of leaky gut as an initiating factor for microbiota dysbiosis that eventually led to pathological consequences was proposed as the "common ground hypothesis", which will be highlighted in this review. Overall, the understanding of the core interplay between gut microbiota and epithelial barriers at early subclinical phases will shed light to novel therapeutic strategies to manage chronic inflammatory disorders and colitis-associated cancers.


Assuntos
Neoplasias Colorretais/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/fisiologia , Imunidade Inata/genética , Doenças Inflamatórias Intestinais/imunologia , Animais , Neoplasias Colorretais/microbiologia , Disbiose/microbiologia , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA