RESUMO
BACKGROUND: Cataracts are a common ophthalmic disease and postoperative vision recovery is crucial to patient quality of life. Rational and efficient care models play an important role in promoting vision recovery. AIM: To evaluate the clinical effectiveness of procedural nursing care combined with communication intervention in vision recovery after cataract ultrasound emulsification. METHODS: A randomized controlled study was conducted on 100 patients with cataracts who underwent ultrasound emulsification surgery. They were randomly assigned to an experimental group or a control group. The experimental group received procedural nursing combined with Connect, Introduce, Communicate, Ask, Respond, Exit (CICARE) communication intervention, whereas the control group received conventional nursing. The effectiveness of the nursing model was assessed by comparing differences in vision recovery, pain scores, and mental health status between the two groups. RESULTS: It was found that over time the visual acuity of patients in both groups gradually recovered and patients in the experimental group had lower pain scores and superior mental health status than the control group (P < 0.05). CONCLUSION: Procedural nursing combined with CICARE communication intervention has positive effects on vision recovery in patients after cataract ultrasound emulsification.
RESUMO
Purpose: The increasing global burden of cancer has become a significant challenge for public health. The Chinese government introduced the National Drug Price Negotiation (NDPN) policy with the goal of lowering the prices of innovative drugs and enhancing their accessibility. This study aims to evaluate the impact of the 2021 NDPN policy on the availability, utilization, and cost of anticancer medicines in China. Methods: Data was gathered from 1519 hospitals between April 2021 and December 2022, with a focus on eight anticancer drugs affected by the 2021 NDPN policy. The availability, Defined Daily Doses (DDDs), and cost per Defined Daily Dose (DDDc) before and after the intervention were evaluated through interrupted time series analysis. Results: The NDPN policy resulted in a substantial 5.10% increase in the availability of anticancer drugs (p < 0.001). Utilization also experienced a significant surge, with an immediate increase of 11,254.36 DDDs (p < 0.001) and a monthly increase of 1208.28 DDDs (p < 0.001) following policy implementation. The DDDc decreased by US$ 111.00 (p < 0.001) immediately after the policy. Disparities in regional drug utilization were evident, with higher usage in the eastern region. Conclusion: The 2021 NDPN policy has notably enhanced the availability and utilization of anticancer medications in China while reducing their cost, in line with the policy's objectives. However, continuous monitoring is essential to ensure sustained access and to tackle regional disparities in drug utilization.
RESUMO
Mitochondria generate energy to support cells. They are important organelles that engage in key biological pathways. The dysfunction of mitochondria can be linked to hepatocarcinogenesis, which has been actively explored in recent years. To investigate the mitochondrial dysfunction caused by genetic variations, target-panel sequencing is a flexible and promising strategy. However, the copy number of mitochondria generally exceeds nuclear DNA, which raises a concern that uneven target enrichment of mitochondrial DNA (mtDNA) and nuclear DNA (ncDNA) in target-panel sequencing would lead to an undesirably biased representation of them. To resolve this issue, we evaluated the optimal pooling of mtDNA probes and ncDNA probes by a series of dilutions of mtDNA probes in both genomic DNA (gDNA) and cell-free DNA (cfDNA) samples. The evaluation was based on read count, average sequencing depth and coverage of targeted regions. We determined that an mtDNA:ncDNA probe ratio of around 1:10 would offer a good balance of sequencing performance and cost effectiveness. Moreover, we estimated the median physiological mtDNA:ncDNA copy ratio as 38.1 and 2.9 in cfDNA and gDNA samples of non-liver cancer subjects, respectively, whereas they were 20.0 and 2.1 in the liver cancer patients. Taken together, this study revealed the appropriate pooling strategy of mtDNA probes and ncDNA probes in target-panel sequencing and suggested the normal range of physiological variation of the mtDNA:ncDNA copy ratio in non-liver cancer individuals. This can serve as a useful reference for future target-panel sequencing investigations of the mitochondrial genome in liver cancer.
RESUMO
The intricate interplay among extracellular vesicles, cancer stemness properties, and the immune system significantly impacts hepatocellular carcinoma (HCC) progression, treatment response, and patient prognosis. Extracellular vesicles (EVs), which are membrane-bound structures, play a pivotal role in conveying proteins, lipids, and nucleic acids between cells, thereby serving as essential mediators of intercellular communication. Since a lot of current research focuses on small extracellular vesicles (sEVs), with diameters ranging from 30 nm to 200 nm, this review emphasizes the role of sEVs in the context of interactions between HCC stemness-bearing cells and the immune cells. sEVs offer promising opportunities for the clinical application of innovative diagnostic and prognostic biomarkers in HCC. By specifically targeting sEVs, novel therapeutics aimed at cancer stemness can be developed. Ongoing investigations into the roles of sEVs in cancer stemness and immune regulation in HCC will broaden our understanding and ultimately pave the way for groundbreaking therapeutic interventions.
Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Vesículas Extracelulares , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/imunologia , Comunicação Celular/imunologia , Microambiente Tumoral/imunologia , AnimaisRESUMO
BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a heterogeneous cancer with varying levels of liver tumor initiating or cancer stem cells in the tumors. We aimed to investigate the expression of different liver cancer stem cell (LCSC) markers in human HCCs and identify their regulatory mechanisms in stemness-related cells. METHODS: We used an unbiased, single-marker sorting approach by flow cytometry, fluorescence-activated cell sorting, and transcriptomic analyses on HCC patients' resected specimens. Knockdown approach was used, and relevant functional assays were conducted on the identified targets of interest. RESULTS: Flow cytometry on a total of 60 HCC resected specimens showed significant heterogeneity in the expression of LCSC markers, with CD24, CD13, and EpCAM mainly contributing to this heterogeneity. Concomitant expression of CD24, CD13, and EpCAM was detected in 32 HCC samples, and this was associated with advanced tumor stages. Transcriptomic sequencing on the HCC cells sorted for these individual markers identified epidermal growth factor receptor kinase substrate 8-like protein 3 (EPS8L3) as a common gene associated with the 3 markers and was functionally validated in HCC cells. Knocking down EPS8L3 suppressed the expression of all 3 markers. To search for the upstream regulation of EPS8L3, we found SP1 bound to EPS8L3 promoter to drive EPS8L3 expression. Furthermore, using Akt inhibitor MK2206, we showed that Akt signaling-driven SP1 drove the expression of the 3 LCSC markers. CONCLUSIONS: Our findings suggest that Akt signaling-driven SP1 promotes EPS8L3 expression, which is critical in maintaining the downstream expression of CD24, CD13, and EpCAM. The findings provide insight into potential LCSC-targeting therapeutic strategies.
Assuntos
Antígeno CD24 , Carcinoma Hepatocelular , Molécula de Adesão da Célula Epitelial , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Antígeno CD24/metabolismo , Antígeno CD24/genética , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologiaRESUMO
The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.
Assuntos
Via de Sinalização Hippo , Interleucina-6 , Regeneração Hepática , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , Receptor Tipo 2 de Angiotensina , Transdução de Sinais , Animais , Masculino , Camundongos , Acetaminofen , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteínas de Sinalização YAP/metabolismoRESUMO
Introduction: Immunotherapy has resulted in pathologic responses in hepatocellular carcinoma (HCC), but the benefits and molecular mechanisms of neoadjuvant immune checkpoint blockade are largely unknown. Methods: In this study, we evaluated the efficacy and safety of preoperative nivolumab (anti-PD-1) in patients with intermediate and locally advanced HCC and determined the molecular markers for predicting treatment response. Results: Between July 2020 and November 2021, 20 treatment-naive HCC patients with intermediate and locally advanced tumors received preoperative nivolumab at 3 mg/kg for 3 cycles prior to surgical resection. Nineteen patients underwent surgical resection on trial. Seven (36.8%) of the 19 patients had major pathologic tumor necrosis (≥60%) in the post-nivolumab resection specimens, with 3 having almost complete (>90%) tumor necrosis. The tumor necrosis was hemorrhagic and often accompanied by increased or dense immune cell infiltrate at the border of the tumors. None of the patients developed major adverse reactions contradicting hepatectomy. RNA-sequencing analysis on both pre-nivolumab tumor biopsies and post-nivolumab resected specimens showed that, in cases with major pathologic necrosis, the proportion of CD8 T cells in the HCC tissues predominantly increased after treatment. Moreover, to investigate noninvasive biomarker for nivolumab response, we evaluated the copy number variation (CNV) using target-panel sequencing on plasma cell-free DNA of the patients and derived a CNV-based anti-PD-1 score. The score correlated with the extent of tumor necrosis and was validated in a Korean patient cohort with anti-PD-1 treatment. Conclusion: Neoadjuvant nivolumab demonstrated promising clinical activity in intermediate and locally advanced HCC patients. We also identified useful noninvasive biomarker predicting responsiveness.
RESUMO
Background: Left ventricular remodeling (LVR) is a key factor leading to the onset and progression of heart failure with reduced ejection fraction (HFrEF). Improving LVR can delay the progression of HFrEF and improve quality of life. Objective: To evaluate the improvement effect of Astragalus membranaceus (A. membranaceus) on LVR in patients with HFrEF. Method: We retrieved randomized controlled trials (RCTs) of A. membranaceus in treating HFrEF from eight Chinese and English databases, up until 31 October 2023. To assess the quality of the literature, we utilized the bias risk tool from the Cochrane Handbook. For meta-analysis, we employed Review Manager 5.4.1 software. Additionally, we performed sensitivity analysis and publication bias assessment using Stata 17.0 software. Result: Totally 1,565 patients were included in 19 RCTs. Compared to conventional treatment (CT), the combination therapy of A. membranaceus with CT demonstrated significant improvements in LVR, specifically increasing left ventricular ejection fraction (LVEF, MD = 5.82, 95% CI: 4.61 to 7.03, p < 0.00001), decreasing left ventricular end-diastolic diameter (LVEDD, MD = -4.05, 95% CI: -6.09 to -2.01, p = 0.0001), and left ventricular end-systolic diameter (LVESD, MD = -12.24, 95% CI: -15.24 to -9.24, p < 0.00001). The combination therapy of A. membranaceus with CT also improved clinical efficacy (RR = 4.81, 95% CI: 3.31 to 7.00, p < 0.00001), reduced brain natriuretic peptide (BNP, MD = -113.57, 95% CI: -146.91 to -81.22, p < 0.00001) level, and increased 6-min walking distance (6-MWD, MD = 67.62, 95% CI: 41.63 to 93.60, p < 0.00001). In addition, the combination therapy of A. membranaceus with CT mitigated inflammatory responses by reducing tumor necrosis factor-alpha (TNF-α, MD = -16.83, 95% CI: -22.96 to -10.71, p < 0.00001), interleukin-6 (IL-6, MD = -29.19, 95% CI: -36.08 to -22.30, p < 0.00001), and high-sensitivity C-reactive protein (hs-CRP, MD = -0.98, 95% CI: -1.43 to -0.52, p < 0.0001). Notably, the combination therapy of A. membranaceus with CT did not increase the incidence of adverse reactions (RR = 0.86, 95% CI: 0.25 to 2.96, p = 0.81). Conclusion: This systematic review and meta-analysis revealed that the combination therapy of A. membranaceus with CT has more advantages than CT alone in improving LVR and clinical efficacy in HFrEF patients, without increasing the incidence of adverse reactions. However, due to the limited quality of included studies, more high-quality investigations are required to provide reliable evidence for clinical use. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=397571, Identifier: CRD42023397571.
RESUMO
Biomolecular condensates have been proposed to mediate cellular signaling transduction. However, the mechanism and functional consequences of signal condensates are not well understood. Here we report that LATS2, the core kinase of the Hippo pathway, responds to F-actin cytoskeleton reduction and forms condensates. The proline-rich motif (PRM) of LATS2 mediates its condensation. LATS2 partitions with the main components of the Hippo pathway to assemble a signalosome for LATS2 activation and for its stability by physically compartmentalizing from E3 ligase FBXL16 complex-dependent degradation, which in turn mediates yes-associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) recruitment and inactivation. This oncogenic FBXL16 complex blocks LATS2 condensation by binding to the PRM region to promote its degradation. Disruption of LATS2 condensation leads to tumor progression. Thus, our study uncovers that the signalosomes assembled by LATS2 condensation provide a compartmentalized and reversible platform for Hippo signaling transduction and protein stability, which have potential implications in cancer diagnosis and therapeutics.
Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Supressoras de Tumor , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Proteínas Supressoras de Tumor/metabolismo , Células HEK293 , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Camundongos , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismoRESUMO
The activation of YAP/TAZ, a pair of paralogs of transcriptional coactivators, initiates a dysregulated transcription program, which is a key feature of human cancer cells. However, it is not fully understood how YAP/TAZ promote dysregulated transcription for tumor progression. In this study, we employed the BioID method to identify the interactome of YAP/TAZ and discovered that YAP/TAZ interact with multiple components of SRCAP complex, a finding that was further validated through endogenous and exogenous co-immunoprecipitation, as well as immunofluorescence experiments. CUT&Tag analysis revealed that SRCAP complex facilitates the deposition of histone variant H2A.Z at target promoters. The depletion of SRCAP complex resulted in a decrease in H2A.Z occupancy and the oncogenic transcription of YAP/TAZ target genes. Additionally, the blockade of SRCAP complex suppressed YAP-driven tumor growth. In a genetically engineered lung adenocarcinoma mouse model and non-small cell lung cancer patients, SRCAP complex and H2A.Z deposition were found to be upregulated. This upregulation was statistically correlated with YAP expression, pathological stages, and poor survival in lung cancer patients. Together, our study uncovers that SRCAP complex plays a critical role in YAP/TAZ oncogenic transcription by coordinating H2A.Z deposition during cancer progression, providing potential targets for cancer diagnosis and prevention.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Sinalização YAP , Histonas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Adenosina Trifosfatases/metabolismoRESUMO
Background: The tumor microenvironment of cancers has emerged as a crucial component in regulating cancer stemness and plays a pivotal role in cell-cell communication. However, the specific mechanisms underlying these phenomena remain poorly understood. Methods: We performed the single-cell RNA sequencing (scRNA-seq) on nine HBV-associated hepatocellular carcinoma (HCC) patients. The heterogeneity of the malignant cells in pathway functions, transcription factors (TFs) regulation, overall survival, stemness, as well as ligand-receptor-based intercellular communication with macrophages were characterized. The aggressive and stemness feature for the target tumor subclone was validated by the conduction of in vitro assays including sphere formation, proliferation, Annexin V apoptosis, flow cytometry, siRNA library screening assays, and multiple in vivo preclinical mouse models including mouse hepatoma cell and human HCC cell xenograft models with subcutaneous or orthotopic injection. Results: Our analysis yielded a comprehensive atlas of 31,664 cells, revealing a diverse array of malignant cell subpopulations. Notably, we identified a stemness-related subclone of HCC cells with concurrent upregulation of CD24, CD47, and ICAM1 expression that correlated with poorer overall survival. Functional characterization both in vitro and in vivo validated S100A11 as one of the top downstream mediators for tumor initiation and stemness maintenance of this subclone. Further investigation of cell-cell communication within the tumor microenvironment revealed a propensity for bi-directional crosstalk between this stemness-related subclone and tumor-associated macrophages (TAMs). Co-culture study showed that this interaction resulted in the maintenance of the expression of cancer stem cell markers and driving M2-like TAM polarization towards a pro-tumorigenic niche. We also consolidated an inverse relationship between the proportions of TAMs and tumor-infiltrating T cells. Conclusions: Our study highlighted the critical role of stemness-related cancer cell populations in driving an immunosuppressive tumor microenvironment and identified the S100A11 gene as a key mediator for stemness maintenance in HCC. Moreover, our study provides support that the maintenance of cancer stemness is more attributed to M2 polarization than the recruitment of the TAMs.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , Técnicas de Cocultura , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
BACKGROUND AND AIMS: HCC is an aggressive cancer with a poor clinical outcome. Understanding the mechanisms that drive tumor initiation is important for improving treatment strategy. This study aimed to identify functional cell membrane proteins that promote HCC tumor initiation. APPROACH AND RESULTS: Tailor-made siRNA library screening was performed for all membrane protein-encoding genes that are upregulated in human HCC (n = 134), with sphere formation as a surrogate readout for tumor initiation. Upon confirmation of membranous localization by immunofluorescence and tumor initiation ability by limiting dilution assay in vivo, LanC-like protein-1 (LANCL1) was selected for further characterization. LANCL1 suppressed intracellular reactive oxygen species (ROS) and promoted tumorigenicity both in vitro and in vivo. Mechanistically, with mass spectrometry, FAM49B was identified as a downstream binding partner of LANCL1. LANCL1 stabilized FAM49B by blocking the interaction of FAM49B with the specific E3 ubiquitin ligase TRIM21, thus protecting FAM49B from ubiquitin-proteasome degradation. The LANCL1-FAM49B axis suppressed the Rac1-NADPH oxidase-driven ROS production, but this suppression of ROS was independent of the glutathione transferase function of LANCL1. Clinically, HCCs with high co-expression of LANCL1 and FAM49B were associated with more advanced tumor stage, poorer overall survival, and disease-free survival. In addition, anti-LANCL1 antibodies targeting the extracellular N-terminal domain were able to suppress the self-renewal ability, as demonstrated by the sphere formation ability of HCC cells. CONCLUSIONS: Our data showed that LANCL1 is a cell surface protein and a key contributor to HCC initiation. Targeting the LANCL1-FAM49B-Rac1-NADPH oxidase-ROS signaling axis may be a promising therapeutic strategy for HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , NADPH Oxidases/metabolismo , Linhagem Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismoRESUMO
The robotic liver resection (RLR) has been increasingly applied in recent years and its benefits shown in some aspects owing to the technical advancement of robotic surgical system, however, controversies still exist. Based on the foundation of the previous consensus statement, this new consensus document aimed to update clinical recommendations and provide guidance to improve the outcomes of RLR clinical practice. The guideline steering group and guideline expert group were formed by 29 international experts of liver surgery and evidence-based medicine (EBM). Relevant literature was reviewed and analyzed by the evidence evaluation group. According to the WHO Handbook for Guideline Development, the Guidance Principles of Development and Amendment of the Guidelines for Clinical Diagnosis and Treatment in China 2022, a total of 14 recommendations were generated. Among them were 8 recommendations formulated by the GRADE method, and the remaining 6 recommendations were formulated based on literature review and experts' opinion due to insufficient EBM results. This international experts consensus guideline offered guidance for the safe and effective clinical practice and the research direction of RLR in future.
Assuntos
Procedimentos Cirúrgicos Robóticos , Humanos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Hepatectomia/efeitos adversos , China , Consenso , Fígado/cirurgiaAssuntos
Desinfecção , Mãos , Humanos , Desinfecção/métodos , Extremidade Superior , Pé , Extremidade InferiorRESUMO
INTRODUCTION: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. It can progress from simple steatosis to nonalcoholic steatohepatitis and may even develop into liver fibrosis, hepatocirrhosis, or hepatocellular carcinoma, but there is no effective treatment. MATERIAL AND METHODS: Wild-type (wt) and diabetic (db/db) mouse NAFLD-induced models were used to investigate the hepatoprotective effects and potential mechanisms of dapagliflozin (a new oral hypoglycaemic drug) on type 2 diabetes mellitus (T2DM) complicated with NAFLD, and to establish wt and db/db mouse NAFLD-induced and dapagliflozin treatment models. RESULTS: Dapagliflozin reduces blood glucose, glycosylated haemoglobin, blood lipids, and serum transaminase levels in db/db mice and improves T2DM-related liver injury accompanied by NAFLD; the mechanism may be related to the decrease in dipeptidyl-peptidase-4 (DPP4) protein expression and improvement in liver enzymes. Further mechanism-related studies by our team revealed that dapagliflozin can also downregulate the expression of DPP4 proteins in the liver and reduce serum soluble DPP4 enzyme levels, thereby improving the hepatic steatosis and insulin resistance of NAFLD. CONCLUSION: Dapagliflozin may be an effective drug for the treatment of T2DM-induced NAFLD and NAFLD, providing a reliable laboratory basis and new treatment methods for the clinical treatment of NAFLD.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/farmacologia , Dipeptidil Peptidase 4/uso terapêutico , FígadoRESUMO
OBJECTIVE: To summarize the management experience of helicopter medical transport in patients with critical heart disease, so as to provide reference for transport of patients with critical heart disease under the background of major natural disasters. METHODS: The clinical and transport data of 36 critically ill cardiac patients in Fuwai Central China Cardiovascular Hospital from 16:30 on July 21 to 19:30 on July 22, 2021 due to historically rare heavy rainstorms were collected. All 36 critically ill cardiac patients were transported by helicopter. The safe transportation was implemented under the measures of quickly forming a transport leadership and coordination group, clarifying responsibilities and division of labor, doing a good job in the pretreatment of the patient's condition, pipeline assessment and mechanical circulation support (MCS) equipment, simulating and practicing the transfer process, improving the safety of the transfer implementation process, and effectively handing over with the target hospital. The gender, age, disease type, MCS, transport and outcome of patients were collected. RESULTS: Thirty-six patients with cardiac critical illness were from adult extracardiac intensive care unit (ICU), adult cardiac care unit (CCU), children's CCU, comprehensive ICU and department of neurology. There were 24 males and 12 females; age (50.93±20.86) years old. There were 12 patients using respirator, 7 patients needing MCS, 2 of whom needed both extracorporeal membrane oxygenation (ECMO) and intra-aortic balloon pump (IABP), and 7 patients with post-cardiac surgery. The total distance of transportation of 36 patients was 1 638.4 km, the transit time was 10.5 hours, one way flight time of helicopter was about 8 minutes, and the average transport time per patient was about 17.5 minutes. The vital signs of 36 patients during transport were basically stable, without complications, and all of them reached the target hospital safely. CONCLUSIONS: Under the seamless connection of the rapid establishment of the transfer leadership coordination group, assessment of the patient's condition and pretreatment, the simulation of the transfer process, and the effective handover with the receiving hospital, the use of helicopter for medical transport for critically ill heart patients is feasible and safe, which can buy valuable time for saving patients' lives and further treatment.
Assuntos
Estado Terminal , Cardiopatias , Masculino , Adulto , Criança , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Cardiopatias/terapia , Transporte de Pacientes , Coração , Aeronaves , Estudos RetrospectivosRESUMO
Liver cancer (hepatocellular carcinoma) is a common cancer worldwide. It is an aggressive cancer, with high rates of tumor relapse and metastasis, high chemoresistance, and poor prognosis. Liver tumor-initiating cells (LTICs) are a distinctive subset of liver cancer cells with self-renewal and differentiation capacities that contribute to intratumoral heterogeneity, tumor recurrence, metastasis, and chemo-drug resistance. LTICs, marked by different TIC markers, have high plasticity and use diverse signaling pathways to promote tumorigenesis and tumor progression. LTICs are nurtured in the tumor microenvironment (TME), where noncellular and cellular components participate to build an immunosuppressive and tumor-promoting niche. As a result, the TME has emerged as a promising anticancer therapeutic target, as exemplified by some successful applications of tumor immunotherapy. In this review, we discuss the plasticity of LTICs in terms of cellular differentiation, epithelial-mesenchymal transition, and cellular metabolism. We also discuss the various components of the TME, including its noncellular and cellular components. Thereafter, we discuss the mutual interactions between TME and LTICs, including recently reported molecular mechanisms. Lastly, we summarize and describe new ideas concerning novel approaches and strategies for liver cancer therapy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Microambiente Tumoral , Carcinogênese/patologia , Células-Tronco Neoplásicas/metabolismoRESUMO
BACKGROUND & AIMS: Metabolic reprogramming is recognized as a cancer hallmark intimately linked to tumor hypoxia, which supports rapid tumor growth and mitigates the consequential oxidative stress. Phosphofructokinase-fructose bisphosphatase (PFKFB) is a family of bidirectional glycolytic enzymes possessing both kinase and phosphatase functions and has emerged as important oncogene in multiple types of cancer. However, its clinical relevance, functional significance, and underlying mechanistic insights in hepatocellular carcinoma (HCC), the primary malignancy that develops in the most important metabolic organ, has never been addressed. METHODS: PFKFB4 expression was examined by RNA sequencing in The Cancer Genome Atlas and our in-house HCC cohort. The up-regulation of PFKFB4 expression was confirmed further by quantitative polymerase chain reaction in an expanded hepatitis B virus-associated HCC cohort followed by clinicopathologic correlation analysis. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated PFKFB4 knockout cells were generated for functional characterization in vivo, targeted metabolomic profiling, as well as RNA sequencing analysis to comprehensively examine the impact of PFKFB4 loss in HCC. RESULTS: PFKFB4 expression was up-regulated significantly in HCC and correlated positively with TP53 and TSC2 loss-of-function mutations. In silico transcriptome-based analysis further revealed PFKFB4 functions as a critical hypoxia-inducible gene. Clinically, PFKFB4 up-regulation was associated with more aggressive tumor behavior. Functionally, CRISPR/Cas9-mediated PFKFB4 knockout significantly impaired in vivo HCC development. Targeted metabolomic profiling revealed that PFKFB4 functions as a phosphatase in HCC and its ablation caused an accumulation of metabolites in downstream glycolysis and the pentose phosphate pathway. In addition, PFKFB4 loss induced hypoxia-responsive genes in glycolysis and reactive oxygen species detoxification. Conversely, ectopic PFKFB4 expression conferred sorafenib resistance. CONCLUSIONS: PFKFB4 up-regulation supports HCC development and shows therapeutic implications.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Linhagem Celular Tumoral , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Neoplasias Hepáticas/genética , Hipóxia , Proteína Supressora de Tumor p53/genéticaRESUMO
OBJECTIVE: Growing evidence indicates that tumour cells exhibit characteristics similar to their lineage progenitor cells. We found that S100 calcium binding protein A10 (S100A10) exhibited an expression pattern similar to that of liver progenitor genes. However, the role of S100A10 in hepatocellular carcinoma (HCC) progression is unclear. Furthermore, extracellular vesicles (EVs) are critical mediators of tumourigenesis and metastasis, but the extracellular functions of S100A10, particularly those related to EVs (EV-S100A10), are unknown. DESIGN: The functions and mechanisms of S100A10 and EV-S100A10 in HCC progression were investigated in vitro and in vivo. Neutralising antibody (NA) to S100A10 was used to evaluate the significance of EV-S100A10. RESULTS: Functionally, S100A10 promoted HCC initiation, self-renewal, chemoresistance and metastasis in vitro and in vivo. Of significance, we found that S100A10 was secreted by HCC cells into EVs both in vitro and in the plasma of patients with HCC. S100A10-enriched EVs enhanced the stemness and metastatic ability of HCC cells, upregulated epidermal growth factor receptor (EGFR), AKT and ERK signalling, and promoted epithelial-mesenchymal transition. EV-S100A10 also functioned as a chemoattractant in HCC cell motility. Of significance, S100A10 governed the protein cargos in EVs and mediated the binding of MMP2, fibronectin and EGF to EV membranes through physical binding with integrin αâ ¤. Importantly, blockage of EV-S100A10 with S100A10-NA significantly abrogated these enhancing effects. CONCLUSION: Altogether, our results uncovered that S100A10 promotes HCC progression significantly via its transfer in EVs and regulating the protein cargoes of EVs. EV-S100A10 may be a potential therapeutic target and biomarker for HCC progression.