Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Mol Med ; 28(8): e18247, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520212

RESUMO

Malignant melanoma (MM) is a highly aggressive and deadly form of skin cancer, primarily caused by recurrence and metastasis. Therefore, it is crucial to investigate the regulatory mechanisms underlying melanoma recurrence and metastasis. Our study has identified a potential targeted regulatory relationship between LINC02202, miR-526b-3p and XBP1 in malignant melanoma. Through the regulation of the miR-526b-3p/XBP1 signalling pathway, LINC02202 may play a role in tumour progression and immune infiltration and inhibiting the expression of LINC02202 can increase the efficacy of immunotherapy for melanoma. Our findings shed light on the impact of LINC02202/XBP1 on the phenotype and function of malignant melanoma cells. Furthermore, this study provides a theoretical foundation for the development of novel immunotherapy strategies for malignant melanoma.


Assuntos
Melanoma , MicroRNAs , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , MicroRNAs/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Cutâneas/genética , Sistemas de Liberação de Medicamentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
2.
Signal Transduct Target Ther ; 9(1): 6, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38169461

RESUMO

Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.


Assuntos
Fenômenos Biológicos , Zinco , Humanos , Zinco/metabolismo , Homeostase , Proteínas de Membrana Transportadoras , Progressão da Doença
3.
Front Oncol ; 13: 1286392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074635

RESUMO

Background/aim: Human epidermal growth factor receptor 2 (HER2)-positive breast cancer is associated with a higher risk of metastasis and poorer overall survival (OS) due to HER2 gene overexpression/amplification. Although anti-HER2 targeted therapy has shown survival benefits in HER2-positive advanced breast cancer (ABC) patients, long-term treatment often leads to drug resistance, complicating further treatment options. RC48, an antibody-drug conjugate (ADC), combines the benefits of antibody targeting with the cytotoxic effects of a small molecule drug. Case report: We present a case involving a female patient with HER2-positive ABC who developed drug resistance and disease progression following multi-line anti-HER2 targeted therapy. In this instance, RC48 exhibited anti-tumor activity in an ABC patient resistant to HER2-targeted therapy. After eight treatment cycles with 120 mg of RC48, the tumor size decreased and stabilized. Conclusion: This case report underscores the potential clinical value of RC48 as a promising treatment alternative for patients resistant to HER2 targeted therapies.

4.
Clin Transl Med ; 13(12): e1516, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38148640

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs), integral to the tumour microenvironment, are pivotal in cancer progression, exhibiting either pro-tumourigenic or anti-tumourigenic functions. Their inherent phenotypic and functional diversity allows for the subdivision of CAFs into various subpopulations. While several classification systems have been suggested for different cancer types, a unified molecular classification of CAFs on a single-cell pan-cancer scale has yet to be established. METHODS: We employed a comprehensive single-cell transcriptomic atlas encompassing 12 solid tumour types. Our objective was to establish a novel molecular classification and to elucidate the evolutionary trajectories of CAFs. We investigated the functional profiles of each CAF subtype using Single-Cell Regulatory Network Inference and Clustering and single-cell gene set enrichment analysis. The clinical relevance of these subtypes was assessed through survival curve analysis. Concurrently, we employed multiplex immunofluorescence staining on tumour tissues to determine the dynamic changes of CAF subtypes across different tumour stages. Additionally, we identified the small molecule procyanidin C1 (PCC1) as a target for matrix-producing CAF (matCAF) using molecular docking techniques and further validated these findings through in vitro and in vivo experiments. RESULTS: In our investigation of solid tumours, we identified four molecular clusters of CAFs: progenitor CAF (proCAF), inflammatory CAF (iCAF), myofibroblastic CAF (myCAF) and matCAF, each characterised by distinct molecular traits. This classification was consistently applicable across all nine studied solid tumour types. These CAF subtypes displayed unique evolutionary pathways, functional roles and clinical relevance in various solid tumours. Notably, the matCAF subtype was associated with poorer prognoses in several cancer types. The targeting of matCAF using the identified small molecule, PCC1, demonstrated promising antitumour activity. CONCLUSIONS: Collectively, the various subtypes of CAFs, particularly matCAF, are crucial in the initiation and progression of cancer. Focusing therapeutic strategies on targeting matCAF in solid tumours holds significant potential for cancer treatment.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/metabolismo , Simulação de Acoplamento Molecular , Neoplasias/patologia , Perfilação da Expressão Gênica , Transcriptoma/genética , Microambiente Tumoral/genética
5.
Clin Transl Med ; 13(11): e1481, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37983931

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common tumours in East Asia countries and is associated with Helicobacter pylori infection. H. pylori utilizes virulence factors, CagA and VacA, to up-regulate pro-inflammatory cytokines and activate NF-κB signaling. Meanwhile, the PIEZO1 upregulation and cancer-associated fibroblast (CAF) enrichment were found in GC progression. However, the mechanisms of PIEZO1 upregulation and its involvement in GC progression have not been fully elucidated. METHODS: The CAF enrichment and clinical significance were investigated in animal models and primary samples. The expression of NF-κB and PIEZO1 in GC was confirmed by immunohistochemistry staining, and expression correlation was analysed in multiple GC datasets. GSEA and Western blot analysis revealed the YAP1-CTGF axis regulation by PIEZO1. The stimulatory effects of CTGF on CAFs were validated by the co-culture system and animal studies. Patient-derived organoid and peritoneal dissemination models were employed to confirm the role of the PIEZO1-YAP1-CTGF cascade in GC. RESULTS: Both CAF signature and PIEZO1 were positively correlated with H. pylori infection. PIEZO1, a mechanosensor, was confirmed as a direct downstream of NF-κB to promote the transformation from intestinal metaplasia to GC. Mechanistic studies revealed that PIEZO1 transduced the oncogenic signal from NF-κB into YAP1 signaling, a well-documented oncogenic pathway in GC progression. PIEZO1 expression was positively correlated with the YAP1 signature (CTGF, CYR61, and c-Myc, etc.) in primary samples. The secreted CTGF by cancer cells stimulated the CAF infiltration to form a stiffened collagen-enrichment microenvironment, thus activating PIEZO1 to form a positive feedback loop. Both PIEZO1 depletion by shRNA and CTGF inhibition by Procyanidin C1 enhanced the efficacy of 5-FU in suppressing the GC cell peritoneal metastasis. CONCLUSION: This study elucidates a novel driving PIEZO1-YAP1-CTGF force, which opens a novel therapeutic avenue to block the transformation from precancerous lesions to GC. H. pylori-NF-κB activates the PIEZO1-YAP1-CTGF axis to remodel the GC microenvironment by promoting CAF infiltration. Targeting PIEZO1-YAP1-CTGF plus chemotherapy might serve as a potential therapeutic option to block GC progression and peritoneal metastasis.


Assuntos
Fibroblastos Associados a Câncer , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Peritoneais , Neoplasias Gástricas , Animais , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Gástricas/patologia , Helicobacter pylori/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Microambiente Tumoral/genética , Canais Iônicos
6.
Cancers (Basel) ; 15(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174105

RESUMO

Despite the decline in incidence and mortality rates, gastric cancer (GC) is the fifth leading cause of cancer deaths worldwide. The incidence and mortality of GC are exceptionally high in Asia due to high H. pylori infection, dietary habits, smoking behaviors, and heavy alcohol consumption. In Asia, males are more susceptible to developing GC than females. Variations in H. pylori strains and prevalence rates may contribute to the differences in incidence and mortality rates across Asian countries. Large-scale H. pylori eradication was one of the effective ways to reduce GC incidences. Treatment methods and clinical trials have evolved, but the 5-year survival rate of advanced GC is still low. Efforts should be put towards large-scale screening and early diagnosis, precision medicine, and deep mechanism studies on the interplay of GC cells and microenvironments for dealing with peritoneal metastasis and prolonging patients' survival.

7.
J Cell Physiol ; 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538653

RESUMO

The gaseous ethylene (ET) and the oxylipin-derived jasmonic acid (JA) in plants jointly regulate an arsenal of pathogen responsive genes involved in defending against necrotrophic pathogens. The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor ORA59 is a major positive regulator of the ET/JA-mediated defense pathway in Arabidopsis thaliana. The Arabidopsis agmatine coumaroyltransferase (AtACT) catalyzes the formation of hydroxycinnamic acid amides (HCAAs) which are effective toxic antimicrobial substances known as phytoalexins and play an important role in plant defense response. However, induction and regulation of AtACT gene expression and HCAAs synthesis in plants remain less understood. Through gene coexpression network analysis, we identified a list of GCC-box cis-element containing genes that were coexpressed with ORA59 under diverse biotic stress conditions and might be potential downstream targets of this AP2/ERF-domain transcription factor. Particularly, ORA59 directly binds to AtACT gene promoter via the GCC-boxes and activates AtACT gene expression. The ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-treatment significantly induces AtACT gene expression. Both ORA59 and members of the class II TGA transcription factors are indispensable for ACC-induced AtACT expression. Interestingly, the expression of AtACT is also subject to the signaling crosstalk of the salicylic acid- and ET/JA-mediated defense response pathways. In addition, we found that genes of the phenylpropanoid metabolism pathway were specifically induced by Botrytis cinerea. Taking together, these evidence suggest that the ET/JA signaling pathway activate the expression of AtACT to increase antimicrobial HCAAs production through the transcription factor ORA59 in response to the infection of necrotrophic plant pathogens.

8.
Mol Oncol ; 16(20): 3689-3702, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35971249

RESUMO

Approximately 30% of breast cancer (BC) patients suffer from disease relapse after definitive treatment. Monitoring BC at baseline and disease progression using comprehensive genomic profiling would facilitate the prediction of prognosis. We retrospectively studied 101 BC patients ultimately experiencing relapse and/or metastases. The baseline and circulating tumor DNA-monitoring cohorts included patients with baseline tumor tissue and serial plasma samples, respectively. Samples were analyzed with targeted next-generation sequencing of 425 cancer-relevant genes. Of 35 patients in the baseline cohort, patients with TP53 mutations (P < 0.01), or CTCF/GNAS mutations (P < 0.01) displayed inferior disease-free survival, and patients harboring TP53 (P = 0.06) or NOTCH1 (P = 0.06) mutations showed relatively poor overall survival (OS), compared to patients with wild-type counterparts. Of the 59 patients with serial plasma samples, 11 patients who were newly detected with TP53 mutations had worse OS than patients whose TP53 mutational status remained negative (P < 0.01). These results indicate that an inferior prognosis of advanced breast cancer was potentially associated with baseline TP53, CTCF, and NOTCH1 alterations. Newly identified TP53 mutations after relapse and/or metastasis was another potential prognostic biomarker of poor prognosis.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Feminino , Neoplasias da Mama/patologia , Prognóstico , Estudos Retrospectivos , Proteína Supressora de Tumor p53/genética , Recidiva Local de Neoplasia/genética , Mutação/genética , Biomarcadores , Biomarcadores Tumorais/genética
9.
Front Bioeng Biotechnol ; 10: 911455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875497

RESUMO

Background: Drugs based on synthetic lethality have advantages such as inhibiting tumor growth and affecting normal tissue in vivo. However, specific targets for osteosarcoma have not been acknowledged yet. In this study, a non-targeted but controllable drug delivery system has been applied to selectively enhance synthetic lethality in osteosarcoma in vitro, using the magnetic-driven hydrogel microrobots. Methods: In this study, EPZ015666, a PRMT5 inhibitor, was selected as the synthetic lethality drug. Then, the drug was carried by hydrogel microrobots containing Fe3O4. Morphological characteristics of the microrobots were detected using electron microscopy. In vitro drug effect was detected by the CCK-8 assay kit, Western blotting, etc. Swimming of microrobots was observed by a timing microscope. Selective inhibition was verified by cultured tumors in an increasing magnetic field. Results: Genomic mutation of MTAP deletion occurred commonly in pan-cancer in the TCGA database (nearly 10.00%) and in osteosarcoma in the TARGET database (23.86%). HOS and its derivatives, 143B and HOS/MNNG, were detected by MTAP deletion according to the CCLE database and RT-PCR. EPZ015666, the PRMT5 inhibitor, could reduce the SDMA modification and inhibition of tumor growth of 143B and HOS/MNNG. The hydrogel microrobot drug delivery system was synthesized, and the drug was stained by rhodamine. The microrobots were powered actively by a magnetic field. A simulation of the selected inhibition of microrobots was performed and lower cell viability of tumor cells was detected by adding a high dose of microrobots. Conclusion: Our magnetic-driven drug delivery system could carry synthetic lethality drugs. Meanwhile, the selective inhibition of this system could be easily controlled by programming the strength of the magnetic field.

10.
Oncol Rep ; 37(6): 3509-3519, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28440433

RESUMO

As a natural compound, Ornithogalum caudatum Ait is primarily used as an anti-inflammatory and antitumor agent in Chinese folk medicine. In 1992, OSW-1 was isolated from this compound, which is a new member of cholestane saponin family. In numerous recent studies, OSW-1 has been shown to have powerful cytotoxic anticancer effects against various malignant cells. However, the therapeutic efficacy of OSW-1 on colon cancer and the underlying mechanism are not understood. To explore the mechanism underlying OSW-1 in antitumor therapy, a therapeutic function analysis of OSW-1 on colon cancer was performed in vitro and in vivo. It was shown that with low toxicity on normal colonic cells, OSW-1 suppresses colon cancer cells in vitro and this inhibition was via the intrinsic apoptotic pathway, which increased cellular calcium, changed mitochondrial membrane potential, disrupted mitochondrial morphology, and led to the release of cytochrome c and the activation of caspase-3. Furthermore, in a nude mouse model, OSW-1 had a powerful effect on suppressing colon tumor proliferation without significant side effects through the apoptosis pathway. Taken together, these results demonstrate that OSW-1 is a potential drug for colon cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colestenonas/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Saponinas/administração & dosagem , Animais , Caspase 3/genética , Linhagem Celular Tumoral , Colestenonas/efeitos adversos , Colestenonas/química , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Citocromos c/genética , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Medicina Tradicional Chinesa , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Saponinas/efeitos adversos , Saponinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Med Rep ; 12(6): 8062-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26498992

RESUMO

The present study demonstrated the anti-tumor effects of the quinoline derivative [5-(3-chloro-oxo-4-phenyl-cyclobutyl)-quinoli-8-yl-oxy] acetic acid hydrazide (CQAH) against colorectal carcinoma. Substantial apoptotic effects of CQAH on HCT116 and LoVo human colon cancer cell lines were observed. Apoptosis was identified based on cell morphological characteristics, including cell shrinkage and chromatin condensation as well as Annexin V/propidium iodide double staining followed by flow cytometric analysis and detection of apoptosis-associated proteins by western blot analysis. CQAH induced caspase-3 and PARP cleavage, reduced the expression of the anti-apoptotic proteins myeloid cell leukemia-1 and B-cell lymphoma (Bcl) extra large protein and elevated the expression of the pro-apoptotic protein Bcl-2 homologous antagonist killer. In addition, pharmacological inhibition of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38, significantly reduced CQAH-mediated cell death as well as cleavage of caspase-3 and PARP. Co-treatment of CQAH with the commercial chemotherapeutics 5-fluorouracil and camptothecin-11 significantly improved their efficacies. Comparison of the apoptotic effects of CQAH with those of two illustrated structure-activity associations for this compound type, indicating that substitution at position-4 of the azetidine phenyl ring is pivotal for inducing apoptosis. In conclusion, the results of the present study indicated CQAH and its analogues are potent candidate drugs for the treatment of colon carcinoma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Quinolonas/farmacologia , Antineoplásicos/química , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fluoruracila/farmacologia , Células HCT116 , Humanos , Irinotecano , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolonas/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA