Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 68: 101517, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35644477

RESUMO

BACKGROUND: Bariatric or weight loss surgery is currently the most effective treatment for obesity and metabolic disease. Unlike dieting and pharmacology, its beneficial effects are sustained over decades in most patients, and mortality is among the lowest for major surgery. Because there are not nearly enough surgeons to implement bariatric surgery on a global scale, intensive research efforts have begun to identify its mechanisms of action on a molecular level in order to replace surgery with targeted behavioral or pharmacological treatments. To date, however, there is no consensus as to the critical mechanisms involved. SCOPE OF REVIEW: The purpose of this non-systematic review is to evaluate the existing evidence for specific molecular and inter-organ signaling pathways that play major roles in bariatric surgery-induced weight loss and metabolic benefits, with a focus on Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), in both humans and rodents. MAJOR CONCLUSIONS: Gut-brain communication and its brain targets of food intake control and energy balance regulation are complex and redundant. Although the relatively young science of bariatric surgery has generated a number of hypotheses, no clear and unique mechanism has yet emerged. It seems increasingly likely that the broad physiological and behavioral effects produced by bariatric surgery do not involve a single mechanism, but rather multiple signaling pathways. Besides a need to improve and better validate surgeries in animals, advanced techniques, including inducible, tissue-specific knockout models, and the use of humanized physiological traits will be necessary. State-of-the-art genetically-guided neural identification techniques should be used to more selectively manipulate function-specific pathways.


Assuntos
Cirurgia Bariátrica , Derivação Gástrica , Obesidade Mórbida , Animais , Humanos , Obesidade Mórbida/metabolismo , Cirurgia Bariátrica/efeitos adversos , Obesidade/metabolismo , Derivação Gástrica/métodos , Redução de Peso/fisiologia
2.
Mol Metab ; 25: 64-72, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31126840

RESUMO

OBJECTIVE: Understanding the mechanisms underlying the remarkable beneficial effects of gastric bypass surgery is important for the development of non-surgical therapies or less invasive surgeries in the fight against obesity and metabolic disease. Although the intestinal L-cell hormones glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) have attracted the most attention, direct tests in humans and rodents with pharmacological blockade or genetic deletion of either the GLP1-receptor (GLP1R) or the Y2-receptor (Y2R) were unable to confirm their critical roles in the beneficial effects gastric bypass surgery on body weight and glucose homeostasis. However, new awareness of the power of combinatorial therapies in the treatment of metabolic disease would suggest that combined blockade of more than one signaling pathway may be necessary to reverse the beneficial effects of bariatric surgery. METHODS: The metabolic effects of high-fat diet and the ability of Roux-en-Y gastric bypass surgery to lower food intake and body weight, as well as improve glucose handling, was tested in GLP1R and Y2R-double knockout (GLP1RKO/Y2RKO) and C57BL6J wildtype (WT) mice. RESULTS: GLP1RKO/Y2RKO and WT mice responded similarly for up to 20 weeks on high-fat diet and 16 weeks after RYGB. There were no significant differences in loss of body and liver weight, fat mass, reduced food intake, relative increase in energy expenditure, improved fasting insulin, glucose tolerance, and insulin tolerance between WT and GLP1RKO/Y2RKO mice after RYGB. CONCLUSIONS: Combined loss of GLP1R and Y2R-signaling was not able to negate or attenuate the beneficial effects of RYGB on body weight and glucose homeostasis in mice, suggesting that a larger number of signaling pathways is involved or that the critical pathway has not yet been identified.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Derivação Gástrica , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cirurgia Bariátrica , Glicemia , Peso Corporal , Metabolismo Energético , Regulação da Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Insulina , Resistência à Insulina , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Peptídeo YY , Receptores Acoplados a Proteínas G/genética , Transcriptoma
3.
Sci Rep ; 9(1): 7881, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133715

RESUMO

Gastric bypass surgery is the most effective treatment and is often the only option for subjects with severe obesity. However, investigation of critical molecular mechanisms involved has been hindered by confounding of specific effects of surgery and side effects associated with acute surgical trauma. Here, we dissociate the two components by carrying out surgery in the lean state and testing its effectiveness to prevent diet-induced obesity later in life. Body weight and composition of female mice with RYGB performed at 6 weeks of age were not significantly different from sham-operated and age-matched non-surgical mice at the time of high-fat diet exposure 12 weeks after surgery. These female mice were completely protected from high-fat diet-induced obesity and accompanying metabolic impairments for up to 50 weeks. Similar effects were seen in male mice subjected to RYGB at 5-6 weeks, although growth was slightly inhibited and protection from diet-induced obesity was less complete. The findings confirm that RYGB does not indiscriminately lower body weight but specifically prevents excessive diet-induced obesity and ensuing metabolic impairments. This prevention of obesity model should be crucial for identifying the molecular mechanisms underlying gastric bypass surgery.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Derivação Gástrica , Obesidade/etiologia , Obesidade/prevenção & controle , Envelhecimento , Animais , Glicemia/análise , Composição Corporal , Peso Corporal , Ingestão de Alimentos , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/metabolismo
4.
Nutrients ; 11(3)2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30857366

RESUMO

BACKGROUND/GOALS: The gut hormone peptide YY (PYY) secreted from intestinal L-cells has been implicated in the mechanisms of satiation via Y2-receptor (Y2R) signaling in the brain and periphery and is a major candidate for mediating the beneficial effects of bariatric surgery on appetite and body weight. METHODS: Here we assessed the role of Y2R signaling in the response to low- and high-fat diets and its role in the effects of Roux-en-Y gastric bypass (RYGB) surgery on body weight, body composition, food intake, energy expenditure and glucose handling, in global Y2R-deficient (Y2RKO) and wildtype (WT) mice made obese on high-fat diet. RESULTS: Both male and female Y2RKO mice responded normally to low- and high-fat diet in terms of body weight, body composition, fasting levels of glucose and insulin, as well as glucose and insulin tolerance for up to 30 weeks of age. Contrary to expectations, obese Y2RKO mice also responded similarly to RYGB compared to WT mice for up to 20 weeks after surgery, with initial hypophagia, sustained body weight loss, and significant improvements in fasting insulin, glucose tolerance, insulin resistance (HOMA-IR), and liver weight compared to sham-operated mice. Furthermore, non-surgical Y2RKO mice weight-matched to RYGB showed the same improvements in glycemic control as Y2RKO mice with RYGB that were similar to WT mice. CONCLUSIONS: PYY signaling through Y2R is not required for the normal appetite-suppressing and body weight-lowering effects of RYGB in this global knockout mouse model. Potential compensatory adaptations of PYY signaling through other receptor subtypes or other gut satiety hormones such as glucagon-like peptide-1 (GLP-1) remain to be investigated.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Derivação Gástrica , Obesidade/cirurgia , Peptídeo YY/genética , Receptores dos Hormônios Gastrointestinais/genética , Animais , Masculino , Camundongos , Camundongos Knockout
5.
Obes Surg ; 28(10): 3227-3236, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29770924

RESUMO

BACKGROUND AND PURPOSE: Roux-en-Y gastric bypass surgery (RYGB) remains one of the most effective treatments for obesity and type 2 diabetes. Despite this, the mechanisms through which it acts are still not well understood. Bile acid signaling through the transmembrane G-protein-coupled receptor TGR5 has been shown to have significant effects on metabolism and has recently been reported to be necessary for the full effects of vertical sleeve gastrectomy (VSG), a bariatric surgery with similar effects to RYGB. The goal of the current study is therefore to investigate the role of bile acid signaling through TGR5 to see if it is necessary to obtain the full effects of RYGB. METHODS: High-fat diet-induced obese TGR5-/- and wildtype mice (WT) were subjected to RYGB, sham surgery, or weight matching (WM) to RYGB mice via caloric restriction. Body weight, body composition, food intake, energy expenditure, glucose tolerance, insulin sensitivity, and liver weight were measured. RESULTS: Although the difference in fat mass 20 weeks after surgery between RYGB and sham-operated mice was slightly reduced in TGR5-/- mice when compared to wildtype mice, loss of body weight and fat mass from preoperative levels, reduction of food intake, increase of energy expenditure, and improvement in glycemic control were similar in the two genotypes. Furthermore, improvements in glycemic control were similar in non-surgical mice weight-matched to RYGB. CONCLUSIONS: We conclude that bile acid signaling through TGR5 is not required for the beneficial effects of RYGB in the mouse and that RYGB and VSG may achieve their similar beneficial effects through different mechanisms.


Assuntos
Derivação Gástrica/métodos , Obesidade/metabolismo , Obesidade/cirurgia , Receptores Acoplados a Proteínas G/genética , Redução de Peso/fisiologia , Anastomose em-Y de Roux/métodos , Animais , Glicemia/metabolismo , Composição Corporal/genética , Dieta Hiperlipídica , Ingestão de Alimentos , Metabolismo Energético/genética , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/patologia , Redução de Peso/genética
6.
J Neurosci ; 37(25): 6053-6065, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28539422

RESUMO

The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHA GABA ), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHA GABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHA Gal ). These LHA Gal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHA Gal neurons may represent a subpopulation of LHA GABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHA Gal or LHA GABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHA Gal or LHA GABA neuronal activation both increased operant food-seeking behavior, but only activation of LHA GABA neurons increased overall chow consumption. Additionally, LHA Gal or LHA GABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHA GABA neurons induced compulsive-like locomotor behavior; while LHA Gal neurons induced locomotor activity without compulsivity. Thus, LHA Gal neurons define a subpopulation of LHA GABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified.SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHA GABA neurons is heterogeneous and largely undefined. Here we introduce LHA Gal neurons as a subset of LHA GABA neurons that lack direct innervation of the ventral tegmental area (VTA). LHA Gal neurons are sufficient to drive motivated feeding and locomotor activity similar to LHA GABA neurons, but without inducing compulsive-like behaviors, which we propose to require direct VTA innervation. Our study integrates galanin-expressing LHA neurons into our current understanding of the neuronal circuits and molecular mechanisms of the LHA that contribute to motivated feeding behaviors.


Assuntos
Galanina/biossíntese , Região Hipotalâmica Lateral/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Recompensa , Ácido gama-Aminobutírico/fisiologia , Animais , Antipsicóticos/farmacologia , Clozapina/farmacologia , Comportamento Compulsivo , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Metabolismo Energético/fisiologia , Alimentos , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/metabolismo , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotransmissores/metabolismo
7.
Handb Exp Pharmacol ; 233: 173-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26578523

RESUMO

The continuous rise in obesity is a major concern for future healthcare management. Many strategies to control body weight focus on a permanent modification of food intake with limited success in the long term. Metabolism or energy expenditure is the other side of the coin for the regulation of body weight, and strategies to enhance energy expenditure are a current focus for obesity treatment, especially since the (re)-discovery of the energy depleting brown adipose tissue in adult humans. Conversely, several human illnesses like neurodegenerative diseases, cancer, or autoimmune deficiency syndrome suffer from increased energy expenditure and severe weight loss. Thus, strategies to modulate energy expenditure to target weight gain or loss would improve life expectancies and quality of life in many human patients. The aim of this book chapter is to give an overview of our current understanding and recent progress in energy expenditure control with specific emphasis on central control mechanisms.


Assuntos
Encéfalo/fisiologia , Metabolismo Energético , Adaptação Fisiológica , Animais , Tronco Encefálico/fisiologia , Humanos , Hipotálamo/fisiologia , Termogênese
8.
Dev Cell ; 15(2): 272-84, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18694566

RESUMO

Precise regulation of the formation, maintenance, and remodeling of the vasculature is required for normal development, tissue response to injury, and tumor progression. How specific microRNAs intersect with and modulate angiogenic signaling cascades is unknown. Here, we identified microRNAs that were enriched in endothelial cells derived from mouse embryonic stem (ES) cells and in developing mouse embryos. We found that miR-126 regulated the response of endothelial cells to VEGF. Additionally, knockdown of miR-126 in zebrafish resulted in loss of vascular integrity and hemorrhage during embryonic development. miR-126 functioned in part by directly repressing negative regulators of the VEGF pathway, including the Sprouty-related protein SPRED1 and phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2/p85-beta). Increased expression of Spred1 or inhibition of VEGF signaling in zebrafish resulted in defects similar to miR-126 knockdown. These findings illustrate that a single miRNA can regulate vascular integrity and angiogenesis, providing a new target for modulating vascular formation and function.


Assuntos
Vasos Sanguíneos/embriologia , MicroRNAs/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Vasos Sanguíneos/patologia , Linhagem da Célula , Embrião não Mamífero , Células Endoteliais/citologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Humanos , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Circulation ; 117(17): 2224-31, 2008 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-18427137

RESUMO

BACKGROUND: Heart disease is a leading cause of mortality throughout the world. Tissue damage from vascular occlusive events results in the replacement of contractile myocardium by nonfunctional scar tissue. The potential of new technologies to regenerate damaged myocardium is significant, although cell-based therapies must overcome several technical barriers. One possible cell-independent alternative is the direct administration of small proteins to damaged myocardium. METHODS AND RESULTS: Here we show that the secreted signaling protein stromal cell-derived factor-1alpha (SDF-1alpha), which activates the cell-survival factor protein kinase B (PKB/Akt) via the G protein-coupled receptor CXCR4, protected tissue after an acute ischemic event in mice and activated Akt within endothelial cells and myocytes of the heart. Significantly better cardiac function than in control mice was evident as early as 24 hours after infarction as well as at 3, 14, and 28 days after infarction. Prolonged survival of hypoxic myocardium was followed by an increase in levels of vascular endothelial growth factor protein and neoangiogenesis. Consistent with improved cardiac function, mice exposed to SDF-1alpha demonstrated significantly decreased scar formation than control mice. CONCLUSIONS: These findings suggest that SDF-1alpha may serve a tissue-protective and regenerative role for solid organs suffering a hypoxic insult.


Assuntos
Cardiotônicos/farmacologia , Quimiocina CXCL12/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Regeneração/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Ecocardiografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/patologia , Miocárdio/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA