Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Geroscience ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532069

RESUMO

The endogenous incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) possess neurotrophic, neuroprotective, and anti-neuroinflammatory actions. The dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin reduces degradation of endogenous GLP-1 and GIP, and, thereby, extends the circulation of these protective peptides. The current nonhuman primate (NHP) study evaluates whether human translational sitagliptin doses can elevate systemic and central nervous system (CNS) levels of GLP-1/GIP in naive, non-lesioned NHPs, in line with our prior rodent studies that demonstrated sitagliptin efficacy in preclinical models of Parkinson's disease (PD). PD is an age-associated neurodegenerative disorder whose current treatment is inadequate. Repositioning of the well-tolerated and efficacious diabetes drug sitagliptin provides a rapid approach to add to the therapeutic armamentarium for PD. The pharmacokinetics and pharmacodynamics of 3 oral sitagliptin doses (5, 20, and 100 mg/kg), equivalent to the routine clinical dose, a tolerated higher clinical dose and a maximal dose in monkey, were evaluated. Peak plasma sitagliptin levels were aligned both with prior reports in humans administered equivalent doses and with those in rodents demonstrating reduction of PD associated neurodegeneration. Although CNS uptake of sitagliptin was low (cerebrospinal fluid (CSF)/plasma ratio 0.01), both plasma and CSF concentrations of GLP-1/GIP were elevated in line with efficacy in prior rodent PD studies. Additional cellular studies evaluating human SH-SY5Y and primary rat ventral mesencephalic cultures challenged with 6-hydroxydopamine, established cellular models of PD, demonstrated that joint treatment with GLP-1 + GIP mitigated cell death, particularly when combined with DPP-4 inhibition to maintain incretin levels. In conclusion, this study provides a supportive translational step towards the clinical evaluation of sitagliptin in PD and other neurodegenerative disorders for which aging, similarly, is the greatest risk factor.

2.
PLoS One ; 18(9): e0291927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733672

RESUMO

Abnormal accumulation of alpha-synuclein (αSyn) in the remaining nigra dopaminergic neurons is a common neuropathological feature found in patients with Parkinson's disease (PD). Antibody-based immunotherapy has been considered a potential approach for PD treatment. This study aims to investigate the effectiveness of active immunization against αSyn in a mouse model of PD. Adult mice were immunized with or without a synthetic peptide containing the C-terminal residues of human αSyn and activation epitopes, followed by an intranigral injection of adeno-associated virus vectors for overexpressing human αSyn. Upon the peptide injection, αSyn-specific antibodies were raised, accompanied by degeneration of dopaminergic neurons and motor deficits. Furthermore, the induction of neuroinflammation was postulated by the elevation of astroglial and microglial markers in the immunized mice. Instead of lessening αSyn toxicity, this peptide vaccine caused an increase in the pathogenic species of αSyn. Our data demonstrated the potential adverse effects of active immunization to raise antibodies against the C-terminal fragment of αSyn. This drawback highlights the need for further investigation to weigh the pros and cons of immunotherapy in PD. Applying the αSyn C-terminal peptide vaccine for PD treatment should be cautiously exercised. This study provides valuable insights into the intricate interplay among immune intervention, αSyn accumulation, and neurodegeneration.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Adulto , Humanos , Animais , Camundongos , alfa-Sinucleína/genética , Doença de Parkinson/terapia , Locomoção , Imunoterapia , Anticorpos , Imunização
3.
Sci Rep ; 13(1): 8148, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208379

RESUMO

Saposin and its precursor prosaposin are endogenous proteins with neurotrophic and anti-apoptotic properties. Prosaposin or its analog prosaposin-derived 18-mer peptide (PS18) reduced neuronal damage in hippocampus and apoptosis in stroke brain. Its role in Parkinson's disease (PD) has not been well characterized. This study aimed to examine the physiological role of PS18 in 6-hydroxydopamine (6-OHDA) cellular and animal models of PD. We found that PS18 significantly antagonized 6-OHDA -mediated dopaminergic neuronal loss and TUNEL in rat primary dopaminergic neuronal culture. In SH-SY5Y cells overexpressing the secreted ER calcium-monitoring proteins, we found that PS18 significantly reduced thapsigargin and 6-OHDA-mediated ER stress. The expression of prosaposin and the protective effect of PS18 were next examined in hemiparkinsonian rats. 6-OHDA was unilaterally administered to striatum. The expression of prosaposin was transiently upregulated in striatum on D3 (day 3) after lesioning and returned below the basal level on D29. The 6-OHDA-lesioned rats developed bradykinesia and an increase in methamphetamine-mediated rotation, which was antagonized by PS18. Brain tissues were collected for Western blot, immunohistochemistry, and qRTPCR analysis. Tyrosine hydroxylase immunoreactivity was significantly reduced while the expressions of PERK, ATF6, CHOP, and BiP were upregulated in the lesioned nigra; these responses were significantly antagonized by PS18. Taken together, our data support that PS18 is neuroprotective in cellular and animal models of PD. The mechanisms of protection may involve anti-ER stress.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Saposinas , Animais , Humanos , Ratos , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Saposinas/genética , Saposinas/metabolismo , Substância Negra/metabolismo
4.
Genes (Basel) ; 12(6)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205689

RESUMO

Accumulation of α-Synuclein (αSyn) in nigral dopaminergic neurons is commonly seen in patients with Parkinson's disease (PD). We recently reported that transduction of intracellular single-chain intrabody targeting the 53-87 amino acid residues of human αSyn by recombinant adeno associated viral vector (AAV-NAC32) downregulated αSyn protein in SH-SY5Y cells and rat brain. This study characterizes the behavioral phenotype and dopaminergic protection in animals receiving AAV-NAC32. Our results show that adult DAT-Cre rats selectively overexpress αSyn in nigra dopaminergic neurons after local administration of AAV-DIO-αSyn. These animals develop PD-like phenotype, including bradykinesia and loss of tyrosine hydroxylase (TH) immunoreactivity in substantia nigra pars compacta dorsal tier (SNcd). An injection of AAV-NAC32 to nigra produces a selective antibody against αSyn and normalizes the behavior. AAV-NAC32 significantly increases TH, while reduces αSyn immunoreactivity in SNcd. Altogether, our data suggest that an AAV-mediated gene transfer of NAC32 antibody effectively antagonizes αSyn-mediated dopaminergic degeneration in nigra, which may be a promising therapeutic candidate for synucleinopathy or PD.


Assuntos
Anticorpos/uso terapêutico , Imunoterapia/métodos , Locomoção , Doença de Parkinson/terapia , alfa-Sinucleína/imunologia , Animais , Anticorpos/imunologia , Células CHO , Cricetinae , Cricetulus , Dependovirus/genética , Neurônios Dopaminérgicos/metabolismo , Vetores Genéticos/genética , Masculino , Doença de Parkinson/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Ratos , Ratos Long-Evans , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , alfa-Sinucleína/química , alfa-Sinucleína/genética
5.
J Parkinsons Dis ; 10(2): 573-590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32176654

RESUMO

BACKGROUND: Accumulation of α-synuclein (αSyn) in the dopaminergic neurons is a common pathology seen in patients with Parkinson's disease (PD). Overproduction of αSyn potentiates the formation of oligomeric αSyn aggregates and enhances dopaminergic neuron degeneration. Downregulating intracellular monomeric αSyn prevents the formation of αSyn oligomers and is a potential therapeutic strategy to attenuate the progression of PD. OBJECTIVE: The purpose of this study is to investigate the efficacy of gene delivery of αSyn-specific single-chain antibodies in vitro and in vivo. METHODS AND RESULTS: The plasmids for αSyn and selective antibodies (NAC32, D10, and VH14) were constructed and were transfected to HEK293 and SH-SY5Y cells. Co-expression of αSyn with NAC32, but not D10 or VH14, profoundly downregulated αSyn protein, but not αSyn mRNA levels in these cells. The interaction of αSyn and NAC32 antibody was next examined in vivo. Adeno-associated virus (AAV)-αSyn combined with AAV-NAC32 or AAV-sc6H4 (a negative control virus) were stereotactically injected into the substantia nigra of adult rats. AAV-NAC32 significantly reduced AAV-encoded αSyn levels in the substantia nigra and striatum and increased tyrosine hydroxylase immunoreactivity in the striatum. Also, in the animals injected with AAV-NAC32 alone, endogenous αSyn protein levels were significantly downregulated in the substantia nigra. CONCLUSION: Our data suggest that AAV-mediated gene transfer of NAC32 is a feasible approach for reducing the expression of target αSyn protein in brain.


Assuntos
Corpo Estriado/metabolismo , Doença de Parkinson/metabolismo , Anticorpos de Cadeia Única/metabolismo , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Dependovirus , Modelos Animais de Doenças , Regulação para Baixo , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Ratos
6.
Stem Cells Transl Med ; 9(2): 203-220, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31738023

RESUMO

The present study used in vitro and in vivo stroke models to demonstrate the safety, efficacy, and mechanism of action of adult human bone marrow-derived NCS-01 cells. Coculture with NCS-01 cells protected primary rat cortical cells or human neural progenitor cells from oxygen glucose deprivation. Adult rats that were subjected to middle cerebral artery occlusion, transiently or permanently, and subsequently received intracarotid artery or intravenous transplants of NCS-01 cells displayed dose-dependent improvements in motor and neurological behaviors, and reductions in infarct area and peri-infarct cell loss, much better than intravenous administration. The optimal dose was 7.5 × 106 cells/mL when delivered via the intracarotid artery within 3 days poststroke, although therapeutic effects persisted even when administered at 1 week after stroke. Compared with other mesenchymal stem cells, NCS-01 cells ameliorated both the structural and functional deficits after stroke through a broad therapeutic window. NCS-01 cells secreted therapeutic molecules, such as basic fibroblast growth factor and interleukin-6, but equally importantly we observed for the first time the formation of filopodia by NCS-01 cells under stroke conditions, characterized by cadherin-positive processes extending from the stem cells toward the ischemic cells. Collectively, the present efficacy readouts and the novel filopodia-mediated mechanism of action provide solid lab-to-clinic evidence supporting the use of NCS-01 cells for treatment of stroke in the clinical setting.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , AVC Isquêmico/terapia , Transplante de Células-Tronco/métodos , Animais , Medula Óssea , Humanos , AVC Isquêmico/patologia , Masculino , Ratos
7.
Brain Circ ; 5(3): 130-133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620660

RESUMO

A major limitation with cell transplantation in patients is the unimpressive number of cells survived. The death of grafted cells involves apoptosis and immunorejection. In this review, we encapsulate the recent preclinical development that improves the survival of grafted cells and mitigates the immunorejection of human-induced pluripotent stem cells (iPSCs) through co-grating nanoparticles-containing cyclosporine A (NanoCsA) in hemiparkinsonian rats. The study supported the notion that NanoCsA allows for long-lasting CsA discharge and limits immunorejection of human iPSC xenograft in a 6-hydroxydopamine Parkinson's disease rat model.

8.
Brain Res ; 1719: 124-132, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31153914

RESUMO

Increasing evidence has supported that transplantation of human stem cells induces neuroprotective and reparative effects in animal models of Parkinson's disease (PD). However, without systemic immunosuppressive therapy, most of these grafted cells are rejected by the hosts. Long term and systemic injection of cyclosporine-A (CsA) is required to maintain the survival of grafted cells. The purpose this study is to examine a new treatment strategy to suppress the immunorejection by locally co-grafting of polylactic/glycolic acid nanoparticles containing CsA (NanoCsA) with differentiated human induced pluripotent stem cells (iPSCs). In the in vitro media, NanoCsA provided sustained release of CsA for >6 weeks. The differentiated human iPSCs were co-grafted with NanoCsA or NanoVeh (nanoparticle without CsA) to the striatum of unilaterally 6-hydroxydopamine -lesioned rats. NanoCsA/iPSCs co-graft significantly improved locomotor activity compared to NanoVeh/iPSCs co-grafts or iPSC grafts + sytemic CsA at 1 month after transplantation. Brain tissues were collected for measurements of tyrosine hydroxylase (TH) and human marker Stem121 immunoreactivity. Cografting with NanoCsA/iPSCs, compared to NanoVeh/iPSCs, significantly increased TH and Stem121 immunoreactivity as well as tumor formation in the lesioned striatum. Taken together, our study supports that NanoCsA provides long-lasting CsA release and reduces immunorejection of human iPSCs xenograft in a 6-hydroxydopamine rat model of PD.


Assuntos
Ciclosporina/farmacologia , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Ciclosporina/administração & dosagem , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Nanopartículas/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Transplante Heterólogo/métodos
9.
Neurotox Res ; 36(2): 347-356, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31069753

RESUMO

Methamphetamine (Meth) is a widely abused stimulant. High-dose Meth induces degeneration of dopaminergic neurons through p53-mediated apoptosis. A recent study indicated that treatment with the p53 inhibitor, pifithrin-alpha (PFT-α), antagonized Meth-mediated behavioral deficits in mice. The mechanisms underpinning the protective action of PFT-α against Meth have not been identified, and hence, their investigation is the focus of this study. Primary dopaminergic neuronal cultures were prepared from rat embryonic ventral mesencephalic tissue. High-dose Meth challenge reduced tyrosine hydroxylase immunoreactivity and increased terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling (TUNEL) labeling. PFT-α significantly antagonized these responses. PFT-α also reduced Meth-activated translocation of p53 to the nucleus, an initial step before transcription. Previous studies have indicated that p53 can also activate cell death through transcription-independent pathways. We found that PFT-α attenuated endoplasmic reticulum (ER) stressor thapsigargin (Tg)-mediated loss of dopaminergic neurons. ER stress was further monitored through the release of Gaussia luciferase (GLuc) from SH-SY5Y cells overexpressing GLuc-based Secreted ER Calcium-Modulated Protein (GLuc-SERCaMP). Meth or Tg significantly increased GLuc release in to the media, with PFT-α significantly reducing GLuc release. Additionally, PFT-α significantly attenuated Meth-induced CHOP expression. In conclusion, our data indicate that PFT-α is neuroprotective against Meth-mediated neurodegeneration via transcription-dependent nuclear and -independent cytosolic ER stress pathways.


Assuntos
Benzotiazóis/farmacologia , Estimulantes do Sistema Nervoso Central/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Metanfetamina/toxicidade , Tolueno/análogos & derivados , Animais , Linhagem Celular Tumoral , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Humanos , Gravidez , Ratos , Tolueno/farmacologia
10.
Brain Circ ; 4(3): 124-127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450419

RESUMO

Increasing evidence have supported that Wharton's jelly mesenchymal stem cell (WJ-MSCs) have immunomodulatory and protective effects against several diseases including kidney, liver pathologies, and heart injury. Few in vitro studies have reported that WJ-MSCs reduced inflammation in hippocampal slices after oxygen-glucose deprivation. We recently reported the neuroprotective effects of human WJ-MSCs (hWJ-MSCs) in rats exposed to a transient right middle cerebral artery occlusion. hWJ-MSCs transplantation significantly reduced brain infarction and microglia activation in the penumbra leading with a significant reduction of neurological deficits. Interestingly, the grafted hWJ-MSCs in the ischemic core were mostly incorporated into IBA1 (+) cells, suggesting that hWJ-MSCs were immunorejected by the host. The immune rejection of hWJ-MSCs was reduced in after cyclosporine A treatment. Moreover, the glia cell line-derived neurotrophic factor expression was significantly increased in the host brain after hWJ-MSCs transplantation. In conclusion, these results suggest that the protective effect of hWJ-MSCs may be due to the secretion of trophic factors rather than to the survival of grafted cells. This paper is a review article. Referred literature in this paper has been listed in the references section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

11.
Cell Transplant ; 26(4): 571-583, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-27938478

RESUMO

C-X-C chemokine receptor type 4 (CXCR4) is a receptor for a pleiotropic chemokine CXCL12. Previous studies have shown that the acute administration of the CXCR4 antagonist AMD3100 reduced neuroinflammation in stroke brain and mobilized bone marrow hematopoietic stem cells (HSCs). The purpose of this study was to characterize the neuroprotective and neurotrophic effect of a novel CXCR4 antagonist CX549. We demonstrated that CX549 had a higher affinity for CXCR4 and was more potent than AMD3100 to inhibit CXCL12-mediated chemotaxis in culture. CX549 effectively reduced the activation of microglia and improved neuronal survival after injury in neuron/microglia cocultures. Early poststroke treatment with CX549 significantly improved behavioral function, reduced brain infarction, and suppressed the expression of inflammatory markers. Compared to AMD3100, CX549 has a higher affinity for CXCR4, is more efficient to mobilize HSCs for transplantation, and induces behavioral improvement. Our data support that CX549 is a potent anti-inflammatory agent, is neuroprotective against ischemic brain injury, and may have clinical implications for the treatment of stroke.


Assuntos
Encéfalo/patologia , Neuroproteção , Fármacos Neuroprotetores/uso terapêutico , Quinazolinas/uso terapêutico , Receptores CXCR4/antagonistas & inibidores , Acidente Vascular Cerebral/tratamento farmacológico , Triazóis/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Benzilaminas , Encéfalo/efeitos dos fármacos , Infarto Encefálico/complicações , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/patologia , Quimiotaxia/efeitos dos fármacos , Ciclamos , Células HEK293 , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Humanos , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Quinazolinas/farmacologia , Ratos Sprague-Dawley , Receptores CXCR4/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Triazóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
12.
Exp Neurol ; 288: 104-113, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27856285

RESUMO

Proglucagon-derived peptides, especially glucagon-like peptide-1 (GLP-1) and its long-acting mimetics, have exhibited neuroprotective effects in animal models of stroke. Several of these peptides are in clinical trials for stroke. Oxyntomodulin (OXM) is a proglucagon-derived peptide that co-activates the GLP-1 receptor (GLP-1R) and the glucagon receptor (GCGR). The neuroprotective action of OXM, however, has not been thoroughly investigated. In this study, the neuroprotective effect of OXM was first examined in human neuroblastoma (SH-SY5Y) cells and rat primary cortical neurons. GLP-1R and GCGR antagonists, and inhibitors of various signaling pathways were used in cell culture to characterize the mechanisms of action of OXM. To evaluate translation in vivo, OXM-mediated neuroprotection was assessed in a 60-min, transient middle cerebral artery occlusion (MCAo) rat model of stroke. We found that OXM dose- and time-dependently increased cell viability and protected cells from glutamate toxicity and oxidative stress. These neuroprotective actions of OXM were mainly mediated through the GLP-1R. OXM induced intracellular cAMP production and activated cAMP-response element-binding protein (CREB). Furthermore, inhibition of the PKA and MAPK pathways, but not inhibition of the PI3K pathway, significantly attenuated the OXM neuroprotective actions. Intracerebroventricular administration of OXM significantly reduced cerebral infarct size and improved locomotor activities in MCAo stroke rats. Therefore, we conclude that OXM is neuroprotective against ischemic brain injury. The mechanisms of action involve induction of intracellular cAMP, activation of PKA and MAPK pathways and phosphorylation of CREB.


Assuntos
Fatores de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxintomodulina/farmacologia , Acidente Vascular Cerebral/patologia , Animais , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/etiologia , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Infarto da Artéria Cerebral Média/complicações , Locomoção/efeitos dos fármacos , Masculino , Fatores de Crescimento Neural/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Oxintomodulina/uso terapêutico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/fisiopatologia
13.
Exp Neurol ; 288: 176-186, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27845037

RESUMO

Several single incretin receptor agonists that are approved for the treatment of type 2 diabetes mellitus (T2DM) have been shown to be neuroprotective in cell and animal models of neurodegeneration. Recently, a synthetic dual incretin receptor agonist, nicknamed "twincretin," was shown to improve upon the metabolic benefits of single receptor agonists in mouse and monkey models of T2DM. In the current study, the neuroprotective effects of twincretin are probed in cell and mouse models of mild traumatic brain injury (mTBI), a prevalent cause of neurodegeneration in toddlers, teenagers and the elderly. Twincretin is herein shown to have activity at two different receptors, dose-dependently increase levels of intermediates in the neurotrophic CREB pathway and enhance viability of human neuroblastoma cells exposed to toxic concentrations of glutamate and hydrogen peroxide, insults mimicking the inflammatory conditions in the brain post-mTBI. Additionally, twincretin is shown to improve upon the neurotrophic effects of single incretin receptor agonists in these same cells. Finally, a clinically translatable dose of twincretin, when administered post-mTBI, is shown to fully restore the visual and spatial memory deficits induced by mTBI, as evaluated in a mouse model of weight drop close head injury. These results establish twincretin as a novel neuroprotective agent and suggest that it may improve upon the effects of the single incretin receptor agonists via dual agonism.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Incretinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Receptores dos Hormônios Gastrointestinais/metabolismo , Animais , Temperatura Corporal/efeitos dos fármacos , Lesões Encefálicas Traumáticas/complicações , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Camundongos , Camundongos Endogâmicos ICR , Neuroblastoma/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores dos Hormônios Gastrointestinais/agonistas , Reconhecimento Psicológico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
Addict Biol ; 21(2): 255-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25377775

RESUMO

In this study, methamphetamine (Meth)- and glutamate (Glu)-mediated intracellular Ca(++) (Ca(++) i) signals were examined in real time in primary cortical neurons overexpressing an intracellular Ca(++) probe, GCaMP5, by adeno-associated viral (AAV) serotype 1. Binding of Ca(++) to GCaMP increased green fluorescence intensity in cells. Both Meth and Glu induced a rapid increase in Ca(++) i, which was blocked by MK801, suggesting that Meth enhanced Ca(++) i through Glu receptor in neurons. The Meth-mediated Ca(++) signal was also blocked by Mg(++) , low Ca(++) or the L-type Ca(++) channel inhibitor nifedipine. The ryanodine receptor inhibitor dantrolene did not alter the initial Ca(++) influx but partially reduced the peak of Ca(++) i. These data suggest that Meth enhanced Ca(++) influx through membrane Ca(++) channels, which then triggered the release of Ca(++) from the endoplasmic reticulum in the cytosol. AAV-GCaMP5 was also injected to the parietal cortex of adult rats. Administration of Meth enhanced fluorescence in the ipsilateral cortex. Using immunohistochemistry, Meth-induced green fluorescence was found in the NeuN-containing cells in the cortex, suggesting that Meth increased Ca(++) in neurons in vivo. In conclusion, we have used in vitro and in vivo techniques to demonstrate a rapid increase of Ca(++) i by Meth in cortical neurons through overexpression of GCaMP5. As Meth induces behavioral responses and neurotoxicity through Ca(++) i, modulation of Ca(++) i may be useful to reduce Meth-related reactions.


Assuntos
Cálcio/metabolismo , Dopaminérgicos/farmacologia , Ácido Glutâmico/farmacologia , Metanfetamina/farmacocinética , Neurônios/metabolismo , Análise de Variância , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina/metabolismo , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Dantroleno/farmacologia , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Proteínas de Fluorescência Verde/metabolismo , Indicadores e Reagentes/farmacologia , Masculino , Relaxantes Musculares Centrais/farmacologia , Nifedipino/farmacologia , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Psychopharmacology (Berl) ; 233(4): 661-72, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26554386

RESUMO

RATIONALE: Repeated administration of methamphetamine (Meth) induces behavioral sensitization which is characterized by a progressive increase in locomotor response after each injection. Previous studies have shown that Mu opioid receptors (MORs) can regulate Meth-mediated behavioral sensitization. However, the reported interactions are controversial; systemic activation of MORs either enhanced or suppressed Meth sensitization. It is possible that alteration of Meth sensitization after systemic administration of MOR ligands reflects the sum of distinct MOR reactions in multiple brain regions. OBJECTIVES: The purpose of the present study was to examine the actions of MORs on Meth sensitization after regionally selective overexpression of human MOR through an AAV6-based gene delivery system. METHOD: We demonstrated that adeno-associated virus (AAV)-MOR increased MOR immunoreactivity and binding in vitro. AAV-MOR or AAV-green fluorescent protein (GFP) was injected into the nucleus accumbens (NAc) or ventral tegmental area (VTA) of adult mice. Two weeks after viral infection, animals received Meth or saline for five consecutive days. Locomotor behavior and striatal dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) level were determined. RESULTS: Repeated administration of Meth progressively increased locomotor activity; this sensitization reaction was attenuated by intra-NAc AAV-MOR microinjections. Infusion of AAV-MOR to VTA enhanced Meth sensitization. AAV-MOR significantly enhanced DA levels in VTA after VTA infection but reduced DOPAC/DA turnover in the NAc after NAc injection. CONCLUSION: Our data suggest a differential modulation of Meth sensitization by overexpression of MOR in NAc and VTA. Regional manipulation of MOR expression through AAV may be a novel approach to control Meth abuse and psychomimetic activity.


Assuntos
Metanfetamina/administração & dosagem , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores Opioides mu/biossíntese , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Atividade Motora/fisiologia
16.
Cell Transplant ; 24(3): 459-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25668287

RESUMO

After the onset of stroke, a series of progressive and degenerative reactions, including inflammation, is activated, which leads to cell death. We recently reported that human placenta-derived multipotent stem cells (hPDMCs) process potent anti-inflammatory effects. In this study, we examined the protective effect of hPDMC transplants in a rodent model of stroke. Adult male Sprague-Dawley rats were anesthetized. hPDMCs labeled with a vital dye of fluorescing microparticles, DiI, or vehicle were transplanted into three cortical areas adjacent to the right middle cerebral artery (MCA). Five minutes after grafting, the right MCA was transiently occluded for 60 min. Stroke animals receiving hPDMCs showed a significant behavioral improvement and reduction in lesion volume examined by T2-weighted images 4 days poststroke. Brain tissues were collected 1 day later. Human-specific marker HuNu immunoreactivity and DiI fluorescence were found at the hPDMC graft sites, suggesting the survival of hPDMCs in host brain. Grafting of hPDMCs suppressed IBA1 immunoreactivity and deramification of IBA1(+) cells in the perilesioned area, suggesting activation of microglia was attenuated by the transplants. Taken together, our data indicate that hPDMC transplantation reduced cortical lesions and behavioral deficits in adult stroke rats, and these cells could serve as a unique anti-inflammatory reservoir for the treatment of ischemic brain injury.


Assuntos
Células-Tronco Multipotentes/transplante , Placenta/citologia , Acidente Vascular Cerebral/terapia , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Microglia/metabolismo , Células-Tronco Multipotentes/citologia , Gravidez , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia
17.
Neurotox Res ; 25(3): 248-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23884514

RESUMO

Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. 9-Cis retinoic acid (9cRA), a biologically active derivative of vitamin A, has protective effects against damage caused by H(2)O(2) and oxygen-glucose deprivation in vitro as well as infarction and terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling (TUNEL) labeling in ischemic brain. The purpose of this study was to examine if there was a protective role for 9cRA against MA toxicity in nigrostriatal dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase (TH) immunoreactivity while increasing TUNEL labeling. These toxicities were significantly reduced by 9cRA. 9cRA also inhibited the export of Nur77 from nucleus to cytosol, a response that activates apoptosis. The interaction of 9cRA and MA in vivo was next examined in adult rats. 9cRA was delivered intracerebroventricularly; MA was given (5 mg/kg, 4×) one day later. Locomotor behavior was measured 2 days after surgery for a period of 48 h. High doses of MA significantly reduced locomotor activity and TH immunoreactivity in striatum. Administration of 9cRA antagonized these changes. Previous studies have shown that 9cRA can induce bone morphogenetic protein-7 (BMP7) expression and that administration of BMP7 attenuates MA toxicity. We demonstrated that MA treatment significantly reduced BMP7 mRNA expression in nigra. Noggin (a BMP antagonist) antagonized 9cRA-induced behavioral recovery and 9cRA-induced normalization of striatal TH levels. Our data suggest that 9cRA has a protective effect against MA-mediated neurodegeneration in dopaminergic neurons via upregulation of BMP.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Tretinoína/farmacologia , Alitretinoína , Animais , Proteína Morfogenética Óssea 7/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Neurônios Dopaminérgicos/fisiologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Degeneração Neural/induzido quimicamente , Degeneração Neural/tratamento farmacológico , Degeneração Neural/fisiopatologia , Síndromes Neurotóxicas/fisiopatologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo
18.
PLoS One ; 8(12): e81750, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312581

RESUMO

Migration of new neuroprogenitor cells (NPCs) from the subventricular zone (SVZ) plays an important role in neurorepair after injury. Previous studies have shown that brain derived neurotrophic factor (BDNF) enhances the migration of NPCs from SVZ explants in neonatal mice in vitro. The purpose of this study was to identify the role of BDNF in SVZ cells using AAV-BDNF in an animal model of stroke. BDNF protein production after AAV-BDNF infection was verified in primary neuronal culture. AAV-BDNF or AAV-RFP was injected into the left SVZ region of adult rats at 14 days prior to right middle cerebral artery occlusion (MCAo). SVZ tissues were collected from the brain and placed in Metrigel cultures 1 day after MCAo. Treatment with AAV-BDNF significantly increased the migration of SVZ cells in the stroke brain in vitro. In another set of animals, AAV-GFP was co-injected with AAV-BDNF or AAV-RFP to label cells in left SVZ prior to right MCAo. Local administration of AAV-BDNF significantly enhanced recovery of locomotor function and migration of GFP-positive cells from the SVZ toward the lesioned hemisphere in stroke rats. Our data suggest that focal administration of AAV-BDNF to the SVZ increases behavioral recovery post stroke, possibly through the enhancement of migration of cells from SVZ in stroke animals. Regional manipulation of BDNF expression through AAV may be a novel approach for neurorepair in stroke brains.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Encéfalo/fisiopatologia , Dependovirus/genética , Terapia Genética/métodos , Recuperação de Função Fisiológica/genética , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Animais , Encéfalo/patologia , Movimento Celular/genética , Células HEK293 , Humanos , Masculino , Atividade Motora/genética , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
19.
Psychopharmacology (Berl) ; 221(3): 479-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22160138

RESUMO

RATIONALE: Methamphetamine is a commonly abused drug and dopaminergic neurotoxin. Repeated administration of high doses of methamphetamine induces programmed cell death, suppression of dopamine release, and reduction in locomotor activity. Previous studies have shown that pretreatment with peroxisome proliferator-activated receptor gamma (PPARγ) agonist reduced methamphetamine-induced neurodegeneration. OBJECTIVES: The purpose of this study was to examine the role of endogenous PPARγ in protecting against methamphetamine toxicity. METHODS: Adeno-associated virus (AAV) encoding the Cre recombinase gene was unilaterally injected into the left substantia nigra of loxP-PPARγ or control wild-type mice. Animals were treated with high doses of methamphetamine 1 month after viral injection. Behavioral tests were examined using rotarod and rotometer. In vivo voltammetry was used to examine dopamine release/clearance and at 2 months after methamphetamine injection. RESULTS: Administration of AAV-Cre selectively removed PPARγ in left nigra in loxP-PPARγ mice but not in the wild-type mice. The loxP-PPARγ/AAV-Cre mice that received methamphetamine showed a significant reduction in time on the rotarod and exhibited increased ipsilateral rotation using a rotometer. The peak of dopamine release induced by local application of KCl and the rate of dopamine clearance were significantly attenuated in the left striatum of loxP-PPARγ/AAV-Cre animals. Tyrosine hydroxylase immunoreactivity was reduced in the left, compared to right, nigra, and dorsal striatum in loxP-PPARγ/AAV-Cre mice receiving high doses of methamphetamine. CONCLUSION: A deficiency in PPARγ increases vulnerability to high doses of methamphetamine. Endogenous PPARγ may play an important role in reducing methamphetamine toxicity in vivo.


Assuntos
Dopamina/metabolismo , Integrases/genética , Metanfetamina/toxicidade , PPAR gama/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dependovirus/genética , Relação Dose-Resposta a Droga , Masculino , Metanfetamina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/genética , Cloreto de Potássio/farmacologia , Recombinação Genética , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Mol Cells ; 31(3): 209-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21347705

RESUMO

The therapeutic goal in treating cerebral ischemia is to reduce the extent of brain injury and thus minimize neurological impairment. We examined the effects of p-hydroxybenzyl alcohol (HBA), an active component of Gastrodia elata Blume, on transient focal cerebral ischemia-induced brain injury with respect to the involvement of protein disulphide isomerase (PDI), nuclear factor-E2-related factor 2 (Nrf2), and neurotrophic factors. All animals were ovariectomized 14 days before ischemic injury. Ischemic injury was induced for 1 h by middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion. Three days before MCAO, the vehicle-treated and the HBA-treated groups received intramuscular sesame oil and HBA (25 mg/kg BW), respectively. 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed decreased infarct volume in the ischemic lesion of HBA-treated animals. HBA pretreatment also promoted functional recovery, as measured by the modified neurological severity score (mNSS; p < 0.05). Moreover, expression of PDI, Nrf2, BDNF, GDNF, and MBP genes increased by HBA treatment. In vitro, H(2)O(2)-induced PC12 cell death was prevented by 24 h HBA treatment, but bacitracin, a PDI inhibitor, attenuated this cytoprotective effect in a dose-dependent manner. HBA treatment for 2 h also induced nuclear translocation of Nrf2, possibly activating the intracellular antioxidative system. These results suggest that HBA protects against brain damage by modulating cytoprotective genes, such as Nrf2 and PDI, and neurotrophic factors.


Assuntos
Álcoois Benzílicos/farmacologia , Lesões Encefálicas/prevenção & controle , Lesões Encefálicas/psicologia , Isquemia Encefálica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Crescimento Neural/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Bacitracina/farmacologia , Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas/enzimologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Morte Celular/efeitos dos fármacos , Córtex Cerebral/patologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Infarto da Artéria Cerebral Média/patologia , Exame Neurológico , Ovariectomia , Células PC12 , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA