Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1135364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124519

RESUMO

To date, colorectal cancer is still ranking top three cancer types severely threatening lives. According to cancer stem cell hypothesis, malignant colorectal lumps are cultivated by a set of abnormal epithelial cells with stem cell-like characteristics. These vicious stem cells are derived from intestinal epithelial stem cells or transformed by terminally differentiated epithelial cells when they accumulate an array of transforming genomic alterations. Colorectal cancer stem cells, whatever cell-of-origin, give rise to all morphologically and functionally heterogenous tumor daughter cells, conferring them with overwhelming resilience to intrinsic and extrinsic stresses. On the other hand, colorectal cancer stem cells and their daughter cells continuously participate in constructing ecological niches for their survival and thrival by communicating with adjacent stromal cells and circulating immune guardians. In this review, we first provide an overview of the normal cell-of-origin populations contributing to colorectal cancer stem cell reservoirs and the niche architecture which cancer stem cells depend on at early stage. Then we survey recent advances on how these aberrant niches are fostered by cancer stem cells and their neighbors. We also discuss recent research on how niche microenvironment affects colorectal cancer stem cell behaviors such as plasticity, metabolism, escape of immune surveillance as well as resistance to clinical therapies, therefore endowing them with competitive advantages compared to their normal partners. In the end, we explore therapeutic strategies available to target malignant stem cells.

2.
Physiol Rep ; 9(21): e15061, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34755492

RESUMO

Angiotensin-converting enzyme 2 (ACE2) and transmembrane proteases (TMPRSS) are multifunctional proteins required for SARS-CoV-2 infection or for amino acid (AA) transport, and are abundantly expressed in mammalian small intestine, but the identity of the intestinal cell type(s) and sites of expression are unclear. Here we determined expression of SARS-CoV-2 entry factors in different cell types and then compared it to that of representative AA, electrolyte, and mineral transporters. We tested the hypothesis that SARS-CoV-2, AA, electrolyte, and mineral transporters are expressed heterogeneously in different intestinal cell types by making mouse enteroids enriched in enterocytes (ENT), goblet (GOB), Paneth (PAN), or stem (ISC) cells. Interestingly, the expression of ACE2 was apical and modestly greater in ENT, the same pattern observed for its associated AA transporters B0 AT1 and SIT1. TMPRSS2 and TMPRSS4 were more highly expressed in crypt-residing ISC. Expression of electrolyte transporters was dramatically heterogeneous. DRA, NBCe1, and NHE3 were greatest in ENT, while those of CFTR and NKCC1 that play important roles in secretory diarrhea, were mainly expressed in ISC and PAN that also displayed immunohistochemically abundant basolateral NKCC1. Intestinal iron transporters were generally expressed higher in ENT and GOB, while calcium transporters were expressed mainly in PAN. Heterogeneous expression of its entry factors suggests that the ability of SARS-CoV-2 to infect the intestine may vary with cell type. Parallel cell-type expression patterns of ACE2 with B0 AT1 and SIT1 provides further evidence of ACE2's multifunctional properties and importance in AA absorption.


Assuntos
COVID-19/virologia , Eletrólitos/metabolismo , Células Epiteliais/metabolismo , Intestinos/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Minerais/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/patologia , COVID-19/transmissão , Células Epiteliais/citologia , Células Epiteliais/virologia , Imuno-Histoquímica , Intestinos/citologia , Intestinos/virologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , SARS-CoV-2/isolamento & purificação , Serina Endopeptidases/metabolismo
3.
J Cell Physiol ; 236(12): 8148-8159, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34192357

RESUMO

A number of studies have examined the effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) on intestinal inflammation driven by immune cells, while little information is currently available about its impact on inflammation caused by intestinal epithelial cell (IEC) defects. Mice lacking IEC-specific Rab11a a recycling endosome small GTPase resulted in increased epithelial cell production of inflammatory cytokines, notably IL-6 and early onset of enteritis. To determine whether vitamin D supplementation may benefit hosts with epithelial cell-originated mucosal inflammation, we evaluated in vivo effects of injected 1,25(OH)2 D3 or dietary supplement of a high dose of vitamin D on the gut phenotypes of IEC-specific Rab11a knockout mice (Rab11aΔIEC ). 1,25(OH)2 D3 administered at 25 ng, two doses per mouse, by intraperitoneal injection, reduced inflammatory cytokine production in knockout mice compared to vehicle-injected mice. Remarkably, feeding mice with dietary vitamin D supplementation at 20,000 IU/kg spanning fetal and postnatal developmental stages led to improved bodyweights, reduced immune cell infiltration, and decreased inflammatory cytokines. We found that these vitamin D effects were accompanied by decreased NF-κB (p65) in the knockout intestinal epithelia, reduced tissue-resident macrophages, and partial restoration of epithelial morphology. Our study suggests that dietary vitamin D supplementation may prevent and limit intestinal inflammation in hosts with high susceptibility to chronic inflammation.


Assuntos
Células Epiteliais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Intestinos/efeitos dos fármacos , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Animais , Citocinas/metabolismo , Dieta , Suplementos Nutricionais , Mucosa Intestinal/efeitos dos fármacos , Camundongos
4.
J Biol Chem ; 297(1): 100848, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058200

RESUMO

Within the intestinal epithelium, regulation of intracellular protein and vesicular trafficking is of utmost importance for barrier maintenance, immune responses, and tissue polarity. RAB11A is a small GTPase that mediates the anterograde transport of protein cargos to the plasma membrane. Loss of RAB11A-dependent trafficking in mature intestinal epithelial cells results in increased epithelial proliferation and nuclear accumulation of Yes-associated protein (YAP), a key Hippo-signaling transducer that senses cell-cell contacts and regulates tissue growth. However, it is unclear how RAB11A regulates YAP intracellular localizations. In this report, we examined the relationship of RAB11A to epithelial junctional complexes, YAP, and the associated consequences on colonic epithelial tissue repair. We found that RAB11A controls the biochemical associations of YAP with multiple components of adherens and tight junctions, including α-catenin, ß-catenin, and Merlin, a tumor suppressor. In the absence of RAB11A and Merlin, we observed enhanced YAP-ß-catenin complex formation and nuclear translocation. Upon chemical injury to the intestine, mice deficient in RAB11A were found to have reduced epithelial integrity, decreased YAP localization to adherens and tight junctions, and increased nuclear YAP accumulation in the colon epithelium. Thus, RAB11A-regulated trafficking regulates the Hippo-YAP signaling pathway for rapid reparative response after tissue injury.


Assuntos
Proteínas de Ciclo Celular/genética , Colite/genética , Neurofibromina 2/genética , Fatores de Transcrição/genética , beta Catenina/genética , Proteínas rab de Ligação ao GTP/genética , Junções Aderentes/genética , Animais , Células CACO-2 , Proliferação de Células/genética , Colite/induzido quimicamente , Colite/patologia , Colo/crescimento & desenvolvimento , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Epitélio/crescimento & desenvolvimento , Epitélio/patologia , Humanos , Camundongos , Junções Íntimas/genética , alfa Catenina/genética
5.
J Biol Chem ; 296: 100488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662399

RESUMO

Differentiation of mesenchymal stem cells into adipocyte requires coordination of external stimuli and depends upon the functionality of the primary cilium. The Rab8 small GTPases are regulators of intracellular transport of membrane-bound structural and signaling cargo. However, the physiological contribution of the intrinsic trafficking network controlled by Rab8 to mesenchymal tissue differentiation has not been fully defined in vivo and in primary tissue cultures. Here, we show that mouse embryonic fibroblasts (MEFs) lacking Rab8 have severely impaired adipocyte differentiation in vivo and ex vivo. Immunofluorescent localization and biochemical analyses of Rab8a-deficient, Rab8b-deficient, and Rab8a and Rab8b double-deficient MEFs revealed that Rab8 controls the Lrp6 vesicular compartment, clearance of basal signalosome, traffic of frizzled two receptor, and thereby a proper attenuation of Wnt signaling in differentiating MEFs. Upon induction of adipogenesis program, Rab8a- and Rab8b-deficient MEFs exhibited severely defective lipid-droplet formation and abnormal cilia morphology, despite overall intact cilia growth and ciliary cargo transport. Our results suggest that intracellular Rab8 traffic regulates induction of adipogenesis via proper positioning of Wnt receptors for signaling control in mesenchymal cells.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt , Proteínas rab de Ligação ao GTP/metabolismo , Adipogenia/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Cílios/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Proteínas rab de Ligação ao GTP/genética
6.
Immunity ; 53(2): 398-416.e8, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814028

RESUMO

Paneth cells are the primary source of C-type lysozyme, a ß-1,4-N-acetylmuramoylhydrolase that enzymatically processes bacterial cell walls. Paneth cells are normally present in human cecum and ascending colon, but are rarely found in descending colon and rectum; Paneth cell metaplasia in this region and aberrant lysozyme production are hallmarks of inflammatory bowel disease (IBD) pathology. Here, we examined the impact of aberrant lysozyme production in colonic inflammation. Targeted disruption of Paneth cell lysozyme (Lyz1) protected mice from experimental colitis. Lyz1-deficiency diminished intestinal immune responses to bacterial molecular patterns and resulted in the expansion of lysozyme-sensitive mucolytic bacteria, including Ruminococcus gnavus, a Crohn's disease-associated pathobiont. Ectopic lysozyme production in colonic epithelium suppressed lysozyme-sensitive bacteria and exacerbated colitis. Transfer of R. gnavus into Lyz1-/- hosts elicited a type 2 immune response, causing epithelial reprograming and enhanced anti-colitogenic capacity. In contrast, in lysozyme-intact hosts, processed R. gnavus drove pro-inflammatory responses. Thus, Paneth cell lysozyme balances intestinal anti- and pro-inflammatory responses, with implications for IBD.


Assuntos
Clostridiales/imunologia , Colite Ulcerativa/patologia , Muramidase/genética , Muramidase/metabolismo , Celulas de Paneth/metabolismo , Animais , Clostridiales/genética , Colite Ulcerativa/microbiologia , Doença de Crohn/patologia , Feminino , Microbioma Gastrointestinal/genética , Células Caliciformes/citologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT6/genética
7.
J Nutr ; 150(7): 1722-1730, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386219

RESUMO

BACKGROUND: High intakes of fructose are associated with metabolic diseases, including hypertriglyceridemia and intestinal tumor growth. Although small intestinal epithelia consist of many different cell types, express lipogenic genes, and convert dietary fructose to fatty acids, there is no information on the identity of the cell type(s) mediating this conversion and on the effects of fructose on lipogenic gene expression. OBJECTIVES: We hypothesized that fructose regulates the intestinal expression of genes involved in lipid and apolipoprotein synthesis, that regulation depends on the fructose transporter solute carrier family 2 member a5 [Slc2a5 (glucose transporter 5)] and on ketohexokinase (Khk), and that regulation occurs only in enterocytes. METHODS: We compared lipogenic gene expression among different organs from wild-type adult male C57BL mice consuming a standard vivarium nonpurified diet. We then gavaged twice daily for 2.5 d fructose or glucose solutions (15%, 0.3 mL per mouse) into wild-type, Slc2a5-knockout (KO), and Khk-KO mice with free access to the nonpurified diet and determined expression of representative lipogenic genes. Finally, from mice fed the nonpurified diet, we made organoids highly enriched in enterocyte, goblet, Paneth, or stem cells and then incubated them overnight in 10 mM fructose or glucose. RESULTS: Most lipogenic genes were significantly expressed in the intestine relative to the kidney, liver, lung, and skeletal muscle. In vivo expression of Srebf1, Acaca, Fasn, Scd1, Dgat1, Gk, Apoa4, and Apob mRNA and of Scd1 protein increased (P < 0.05) by 3- to 20-fold in wild-type, but not in Slc2a5-KO and Khk-KO, mice gavaged with fructose. In vitro, Slc2a5- and Khk-dependent, fructose-induced increases, which ranged from 1.5- to 4-fold (P < 0.05), in mRNA concentrations of all these genes were observed only in organoids enriched in enterocytes. CONCLUSIONS: Fructose specifically stimulates expression of mouse small intestinal genes for lipid and apolipoprotein synthesis. Secretory and stem cells seem incapable of transport- and metabolism-dependent lipogenesis, occurring only in absorptive enterocytes.


Assuntos
Frutoquinases/metabolismo , Frutose/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Animais , Frutoquinases/genética , Regulação da Expressão Gênica/fisiologia , Intestino Delgado/enzimologia , Camundongos
8.
Genetics ; 212(4): 1227-1239, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31213502

RESUMO

Colorectal cancer is a complex disease driven by well-established mutations such as APC and other yet to be identified pathways. The GTPase Rab11 regulates endosomal protein trafficking, and previously we showed that loss of Rab11 caused intestinal inflammation and hyperplasia in mice and flies. To test the idea that loss of Rab11 may promote cancer progression, we have analyzed archival human patient tissues and observed that 51 out of 70 colon cancer tissues had lower Rab11 protein staining. By using the Drosophila midgut model, we have found that loss of Rab11 can lead to three changes that may relate to cancer progression. First is the disruption of enterocyte polarity based on staining of the FERM domain protein Coracle. Second is an increased proliferation due to an increased expression of the JAK-STAT pathway ligand Upd3. Third is an increased expression of ImpL2, which is an IGFBP7 homolog and can suppress metabolism. Furthermore, loss of Rab11 can act synergistically with the oncoprotein RasV12 to regulate these cancer-related phenotypes.


Assuntos
Neoplasias do Colo/genética , Proteínas de Drosophila/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Polaridade Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Enterócitos/citologia , Enterócitos/metabolismo , Enterócitos/fisiologia , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
9.
Cancer Res ; 79(16): 4099-4112, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31239271

RESUMO

The effects of polarized membrane trafficking in mature epithelial tissue on cell growth and cancer progression have not been fully explored in vivo. A majority of colorectal cancers have reduced and mislocalized Rab11, a small GTPase dedicated to trafficking of recycling endosomes. Patients with low Rab11 protein expression have poor survival rates. Using genetic models across species, we show that intact recycling endosome function restrains aberrant epithelial growth elicited by APC or RAS mutations. Loss of Rab11 protein led to epithelial dysplasia in early animal development and synergized with oncogenic pathways to accelerate tumor progression initiated by carcinogen, genetic mutation, or aging. Transcriptomic analysis uncovered an immediate expansion of the intestinal stem cell pool along with cell-autonomous Yki/Yap activation following disruption of Rab11a-mediated recycling endosomes. Intestinal tumors lacking Rab11a traffic exhibited marked elevation of nuclear Yap, upd3/IL6-Stat3, and amphiregulin-MAPK signaling, whereas suppression of Yki/Yap or upd3/IL6 reduced gut epithelial dysplasia and hyperplasia. Examination of Rab11a function in enteroids or cultured cell lines suggested that this endosome unit is required for suppression of the Yap pathway by Hippo kinases. Thus, recycling endosomes in mature epithelia constitute key tumor suppressors, loss of which accelerates carcinogenesis. SIGNIFICANCE: Recycling endosome traffic in mature epithelia constitutes a novel tumor suppressing mechanism.


Assuntos
Neoplasias Colorretais/metabolismo , Endossomos/metabolismo , Células Epiteliais/patologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Animais Geneticamente Modificados , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Células Epiteliais/metabolismo , Via de Sinalização Hippo , Humanos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteínas rab de Ligação ao GTP/genética
10.
Cell Stem Cell ; 23(1): 46-59.e5, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29887318

RESUMO

Paneth cells are post-mitotic intestinal epithelial cells supporting the stem cell niche and mucosal immunity. Paneth cell pathologies are observed in various gastrointestinal diseases, but their plasticity and response to genomic and environmental challenges remain unclear. Using a knockin allele engineered at the mouse Lyz1 locus, we performed detailed Paneth cell-lineage tracing. Irradiation induced a subset of Paneth cells to proliferate and differentiate into villus epithelial cells. RNA sequencing (RNA-seq) revealed that Paneth cells sorted from irradiated mice acquired a stem cell-like transcriptome; when cultured in vitro, these individual Paneth cells formed organoids. Irradiation activated Notch signaling, and forced expression of Notch intracellular domain (NICD) in Paneth cells, but not Wnt/ß-catenin pathway activation, induced their dedifferentiation. This study documents Paneth cell plasticity, particularly their ability to participate in epithelial replenishment following stem cell loss, adding to a growing body of knowledge detailing the molecular pathways controlling injury-induced regeneration.


Assuntos
Celulas de Paneth/patologia , Receptores Notch/metabolismo , Adenoma/tratamento farmacológico , Adenoma/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Injeções Intraperitoneais , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Celulas de Paneth/efeitos dos fármacos , Receptores Notch/antagonistas & inibidores , Tamoxifeno/administração & dosagem , Tamoxifeno/farmacologia
11.
Am J Physiol Gastrointest Liver Physiol ; 312(6): G592-G605, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28336548

RESUMO

Nutrient sensing triggers responses by the gut-brain axis modulating hormone release, feeding behavior and metabolism that become dysregulated in metabolic syndrome and some cancers. Except for absorptive enterocytes and secretory enteroendocrine cells, the ability of many intestinal cell types to sense nutrients is still unknown; hence we hypothesized that progenitor stem cells (intestinal stem cells, ISC) possess nutrient sensing ability inherited by progenies during differentiation. We directed via modulators of Wnt and Notch signaling differentiation of precursor mouse intestinal crypts into specialized organoids each containing ISC, enterocyte, goblet, or Paneth cells at relative proportions much higher than in situ as determined by mRNA expression and immunocytochemistry of cell type biomarkers. We identified nutrient sensing cell type(s) by increased expression of fructolytic genes in response to a fructose challenge. Organoids comprised primarily of enterocytes, Paneth, or goblet, but not ISC, cells responded specifically to fructose without affecting nonfructolytic genes. Sensing was independent of Wnt and Notch modulators and of glucose concentrations in the medium but required fructose absorption and metabolism. More mature enterocyte- and goblet-enriched organoids exhibited stronger fructose responses. Remarkably, enterocyte organoids, upon forced dedifferentiation to reacquire ISC characteristics, exhibited a markedly extended lifespan and retained fructose sensing ability, mimicking responses of some dedifferentiated cancer cells. Using an innovative approach, we discovered that nutrient sensing is likely repressed in progenitor ISCs then irreversibly derepressed during specification into sensing-competent absorptive or secretory lineages, the surprising capacity of Paneth and goblet cells to detect fructose, and the important role of differentiation in modulating nutrient sensing.NEW & NOTEWORTHY Small intestinal stem cells differentiate into several cell types transiently populating the villi. We used specialized organoid cultures each comprised of a single cell type to demonstrate that 1) differentiation seems required for nutrient sensing, 2) secretory goblet and Paneth cells along with enterocytes sense fructose, suggesting that sensing is acquired after differentiation is triggered but before divergence between absorptive and secretory lineages, and 3) forcibly dedifferentiated enterocytes exhibit fructose sensing and lifespan extension.


Assuntos
Diferenciação Celular , Linhagem da Célula , Frutose/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Secreções Intestinais/metabolismo , Intestino Delgado/metabolismo , Células-Tronco/metabolismo , Animais , Células Cultivadas , Enterócitos/metabolismo , Frutoquinases/genética , Frutoquinases/metabolismo , Regulação Enzimológica da Expressão Gênica , Genótipo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 5 , Células Caliciformes/metabolismo , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides/metabolismo , Celulas de Paneth/metabolismo , Fenótipo , Transdução de Sinais , Fatores de Tempo
12.
Cytotechnology ; 69(2): 217-227, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28214995

RESUMO

IL-37 has been described as a natural inhibitor of immune responses. Monoclonal antibody (mAb) against human IL-37b with high affinity and specificity can serve as a molecular probe to detect IL-37 and study IL-37 functions, mechanisms and related signal pathways in inflammatory diseases. However, there are very few such mAbs against human IL-37 commercially available so far. In the current study, monoclonal antibodies against human IL-37b were developed by fusing splenocytes from immunized mouse with SP2/0 myeloma cells and polyethylene glycol. Then the antibodies were screened with prokaryotic expressed human IL-37b protein and eukaryotic expressed human IL-37b protein subsequently. Western blot and flow cytometry analysis revealed that selected mAb clons were able to recognize human IL-37 with high specificity. And more importantly, the IL-37b mAbs were fluorescently labeled and can be directly used in flow cytometry and immunohistochemistry. In conclusion, the current study developed new mAbs against human IL-37b, which are applicable in flow cytometry and immunohistochemistry.

13.
Cell Immunol ; 311: 28-35, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27717503

RESUMO

Despite past extensive studies on B and T lymphocyte attenuator (BTLA)-mediated negative regulation of T cell activation, the role of BTLA in antigen presenting cells (APCs) in patients with active pulmonary tuberculosis (ATB) remains poorly understood. Here, we demonstrate that BTLA expression on CD11c APCs increased in patients with ATB. Particularly, BTLA expression in CD11c APCs was likely associated with the attenuated stimulatory capacity on T cells (especially CD8+ T cell) proliferation. BTLA-expressing CD11c APCs showed lower antigen uptake capacity, lower CD86 expression, higher HLA-DR expression, and enhanced IL-6 secretion, compared to counterpart BTLA negative CD11c APCs in healthy controls (HC). Interestingly, BTLA-expressing CD11c APCs from ATB patients displayed lower expression of HLA-DR and less IL-6 secretion, but higher expression of CD86 than those from HC volunteers. Mixed lymphocyte reaction suggests that BTLA expression is likely associated with positive rather than conventional negative regulation of CD11c APCs stimulatory capacity. This role is impaired in ATB patients manifested by low expression of HLA-DR and low production of IL-6. This previous unappreciated role for BTLA may have implications in the prevention and treatment of patients with ATB.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T/imunologia , Tuberculose Pulmonar/imunologia , Adolescente , Adulto , Antígeno B7-2/metabolismo , Antígeno CD11c/metabolismo , Proliferação de Células , Células Cultivadas , Feminino , Antígenos HLA-DR/metabolismo , Humanos , Interleucina-6/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Receptores Imunológicos/metabolismo , Linfócitos T/microbiologia , Adulto Jovem
14.
Mediators Inflamm ; 2016: 8026494, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27006530

RESUMO

Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP) dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents.


Assuntos
Carboplatina/farmacologia , Neoplasias Colorretais/metabolismo , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Transdução de Sinais/efeitos dos fármacos
15.
Cell Mol Life Sci ; 72(17): 3343-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26001904

RESUMO

Toll-like receptors (TLRs) are membrane-bound microbial sensors that mediate important host-to-microbe responses. Cell biology aspects of TLR function have been intensively studied in professional immune cells, in particular the macrophages and dendritic cells, but not well explored in other specialized epithelial cell types. The adult intestinal epithelial cells are in close contact with trillions of enteric microbes and engage in lifelong immune surveillance. Mature intestinal epithelial cells, in contrast to immune cells, are highly polarized. Recent studies suggest that distinct mechanisms may govern TLR traffic and compartmentalization in these specialized epithelial cells to establish and maintain precise signaling of individual TLRs. We, using immune cells as references, discuss here the shared and/or unique molecular machineries used by intestinal epithelial cells to control TLR transport, localization, processing, activation, and signaling. A better understanding of these mechanisms will certainly generate important insights into both the mechanism and potential intervention of leading digestive disorders, in particular inflammatory bowel diseases.


Assuntos
Células Epiteliais/metabolismo , Vigilância Imunológica/fisiologia , Mucosa Intestinal/citologia , Modelos Biológicos , Receptores Toll-Like/metabolismo , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/metabolismo
16.
Cancer Res ; 74(19): 5480-92, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25113996

RESUMO

Mutations in the APC or ß-catenin genes are well-established initiators of colorectal cancer, yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacologic approaches in mouse colorectal cancer and human colorectal cancer xenograft models, we show that incipient intestinal tumor cells activate CDC42, an APC-interacting small GTPase, as a crucial step in malignant progression. In the mouse, Cdc42 ablation attenuated the tumorigenicity of mutant intestinal cells carrying single APC or ß-catenin mutations. Similarly, human colorectal cancer with relatively higher levels of CDC42 activity was particularly sensitive to CDC42 blockade. Mechanistic studies suggested that Cdc42 may be activated at different levels, including at the level of transcriptional activation of the stem cell-enriched Rho family exchange factor Arhgef4. Our results indicate that early-stage mutant intestinal epithelial cells must recruit the pleiotropic functions of Cdc42 for malignant progression, suggesting its relevance as a biomarker and therapeutic target for selective colorectal cancer intervention.


Assuntos
Neoplasias Colorretais/patologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , beta Catenina/genética , beta Catenina/metabolismo
17.
J Gen Virol ; 91(Pt 8): 2080-2090, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20375222

RESUMO

Hepatitis B virus (HBV) infection remains one of the most serious health problems worldwide. Whilst studies have shown that HBV impairs interferon (IFN) production from dendritic cells in chronic hepatitis B patients, it remains unknown whether HBV inhibits IFN production in human hepatocytes. Using transient transfection assays in a primary human hepatocyte cell line (PH5CH8), this study demonstrated that HBV polymerase inhibits IFN-beta promoter activity induced by Newcastle disease virus, Sendai virus or poly(I : C) in a dose-dependent manner, whilst ectopic expression of the HBV core and X proteins had no effect on IFN-beta promoter activity. In addition, HBV polymerase blocked cellular IFN-beta expression and consequent antiviral immunity revealed by an infection protection assay. Furthermore, overexpression of key molecules on the IFN-beta induction axis, together with HBV polymerase, resulted in a block of IFN-beta promoter activity triggered by RIG-I, IPS-1, TRIF, TBK1 and IKKepsilon, but not by an IFN regulatory factor 3 dominant-positive mutant (IRF3-5D), suggesting that HBV polymerase prevents IFN-beta expression at the TBK1/IKKepsilon level. Further studies showed that HBV polymerase inhibited phosphorylation, dimerization and nuclear translocation of IRF3, in response to Sendai virus infection. Finally, it was shown that HBV polymerase-mediated dampening of the interaction between TBK1/IKKepsilon and DDX3 may be involved in the inhibitory effect on IFN-beta induction. Taken together, these findings reveal a novel role of HBV polymerase in HBV counteraction of IFN-beta production in human hepatocytes.


Assuntos
RNA Helicases DEAD-box/imunologia , Produtos do Gene pol/fisiologia , Vírus da Hepatite B/patogenicidade , Fator Regulador 3 de Interferon/antagonistas & inibidores , Interferon beta/biossíntese , Receptor 3 Toll-Like/imunologia , Fatores de Virulência/fisiologia , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Vírus da Hepatite B/imunologia , Hepatócitos/virologia , Humanos , Quinase I-kappa B/metabolismo , Vírus da Doença de Newcastle/imunologia , Poli I-C/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Imunológicos , Vírus Sendai/imunologia , Transfecção
18.
J Interferon Cytokine Res ; 25(10): 617-26, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16241860

RESUMO

Hepatitis B virus (HBV)-specific cytotoxic T lymphocytes (CTLs) can abolish HBV gene expression and replication through a noncytopathic mechanism mediated by tumor necrosis factor-alpha (TNF-alpha). However, the molecular mechanisms of TNF-alpha antiviral activity are not completely understood. To examine TNF-alpha-induced cellular responses and identify genes involved in anti-HBV activity, cDNA microarrays dotted with 14, 112 human genes were used to examine the transcriptional changes in HepG2 after treatment with TNF-alpha for 6 h. The results showed that many genes related to ligands and receptors, signal transduction including the TNF-alpha signaling pathway, mitochondrial and ribosomal proteins, and transcription regulation were induced by TNF-alpha. Interestingly, the TNF-alpha-inducible gene cIAP2 was found to inhibit HBV protein synthesis, viral replication, and transcription. Taken together, our results revealed the global effects of TNF-alpha treatment on hepatocellular gene expression. The antiviral genes identified by microarray could be developed as potential new anti-HBV drugs or for other novel therapies.


Assuntos
Vírus da Hepatite B/metabolismo , Hepatoblastoma/metabolismo , Proteínas Inibidoras de Apoptose/biossíntese , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/fisiologia , Replicação Viral , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/fisiologia , Hepatite B/tratamento farmacológico , Hepatite B/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA