Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(26): e2309770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447017

RESUMO

Percutaneous thermotherapy, a minimally invasive operational procedure, is employed in the ablation of deep tumor lesions by means of target-delivering heat. Conventional thermal ablation methods, such as radiofrequency or microwave ablation, to a certain extent, are subjected to extended ablation time as well as biosafety risks of unwanted overheating. Given its effectiveness and safety, percutaneous thermotherapy gains a fresh perspective, thanks to magnetic hyperthermia. In this respect, an injectable- and magnetic-hydrogel-construct-based thermal ablation agent is likely to be a candidate for the aforementioned clinical translation. Adopting a simple and environment-friendly strategy, a magnetic colloidal hydrogel injection is introduced by a binary system comprising super-paramagnetic Fe3O4 nanoparticles and gelatin nanoparticles. The colloidal hydrogel constructs, unlike conventional bulk hydrogel, can be easily extruded through a percutaneous needle and then self-heal in a reversible manner owing to the unique electrostatic cross-linking. The introduction of magnetic building blocks is exhibited with a rapid magnetothermal response to an alternating magnetic field. Such hydrogel injection is capable of generating heat without limitation of deep penetration. The materials achieve outstanding therapeutic results in mouse and rabbit models. These findings constitute a new class of locoregional interventional thermal therapies with minimal collateral damages.


Assuntos
Carcinoma Hepatocelular , Coloides , Hidrogéis , Neoplasias Hepáticas , Animais , Coelhos , Camundongos , Hidrogéis/química , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Coloides/química , Gelatina/química , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Hipertermia Induzida/métodos , Linhagem Celular Tumoral , Injeções , Nanopartículas Magnéticas de Óxido de Ferro/química
2.
Sci Adv ; 9(43): eadi9944, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37878702

RESUMO

Endowing three-dimensional (3D) displays with flexibility drives innovation in the next-generation wearable and smart electronic technology. Printing circularly polarized luminescence (CPL) materials on stretchable panels gives the chance to build desired flexible stereoscopic displays: CPL provides unusual optical rotation characteristics to achieve the considerable contrast ratio and wide viewing angle. However, the lack of printable, intense circularly polarized optical materials suitable for flexible processing hinders the implementation of flexible 3D devices. Here, we report a controllable and macroscopic production of printable CPL-active photonic paints using a designed confining helical co-assembly strategy, achieving a maximum luminescence dissymmetry factor (glum) value of 1.6. We print customized graphics and meter-long luminous coatings with these paints on a range of substates such as polypropylene, cotton fabric, and polyester fabric. We then demonstrate a flexible textile 3D display panel with two printed sets of pixel arrays based on the orthogonal CPL emission, which lays an efficient framework for future intelligent displays and clothing.

3.
Nat Commun ; 14(1): 5378, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666848

RESUMO

Nanoparticles-based glues have recently been shown with substantial potential for hydrogel adhesion. Nevertheless, the transformative advance in hydrogel-based application places great challenges on the rapidity, robustness, and universality of achieving hydrogel adhesion, which are rarely accommodated by existing nanoparticles-based glues. Herein, we design a type of nanohesives based on the modulation of hydrogel mechanics and the surface chemical activation of nanoparticles. The nanohesives can form robust hydrogel adhesion in seconds, to the surface of arbitrary engineering solids and biological tissues without any surface pre-treatments. A representative application of hydrogel machine demonstrates the tough and compliant adhesion between dynamic tissues and sensors via nanohesives, guaranteeing accurate and stable blood flow monitoring in vivo. Combined with their biocompatibility and inherent antimicrobial properties, the nanohesives provide a promising strategy in the field of hydrogel based engineering.


Assuntos
Hidrogéis , Nanopartículas , Humanos , Engenharia , Fenômenos Físicos , Aderências Teciduais
4.
Nat Commun ; 14(1): 3231, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270627

RESUMO

Smart window is an attractive option for efficient heat management to minimize energy consumption and improve indoor living comfort owing to their optical properties of adjusting sunlight. To effectively improve the sunlight modulation and heat management capability of smart windows, here, we propose a co-assembly strategy to fabricate the electrochromic and thermochromic smart windows with tunable components and ordered structures for the dynamic regulation of solar radiation. Firstly, to enhance both illumination and cooling efficiency in electrochromic windows, the aspect ratio and mixed type of Au nanorods are tuned to selectively absorb the near-infrared wavelength range of 760 to 1360 nm. Furthermore, when assembled with electrochromic W18O49 nanowires in the colored state, the Au nanorods exhibit a synergistic effect, resulting in a 90% reduction of near-infrared light and a corresponding 5 °C cooling effect under 1-sun irradiation. Secondly, to extend the fixed response temperature value to a wider range of 30-50 °C in thermochromic windows, the doping amount and mixed type of W-VO2 nanowires are carefully regulated. Last but not the least, the ordered assembly structure of the nanowires can greatly reduce the level of haze and enhance visibility in the windows.

5.
Nano Lett ; 22(22): 9181-9189, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36374229

RESUMO

The balance between degradability and drug release kinetics is a major challenge for the development of drug delivery systems. Here we develop hierarchically structured nanoparticles comprising multiple noncontact silica shells using an amorphous calcium carbonate template. The system could be degraded in a sequential fashion on account of the molecularly engineered multishelled structures. The hydrolysis rate of drug-containing cores is inversely correlated with the nanoparticle concentration due to the shielding effect of the hierarchical nanostructure and could be exploited to regulate the release kinetics. Specifically, multishelled nanospheres show a low drug release rate with high doses that increases steadily as the concentration decreases due to continuous degradation, thus stabilizing the local drug concentration for effective tumor therapy. Moreover, the nanoparticles could be eventually degraded completely, which may reduce their health risks. This kind of hierarchically structured silica-based nanoparticle could serve as a sustainable drug depot and provides a new avenue for tumor treatment.


Assuntos
Nanopartículas , Nanosferas , Nanoestruturas , Neoplasias , Humanos , Liberação Controlada de Fármacos , Nanoestruturas/química , Dióxido de Silício/química , Nanosferas/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos
6.
Adv Healthc Mater ; 11(19): e2201248, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35842766

RESUMO

Calcium phosphate (CaP) is frequently used as coating for bone implants to promote osseointegration. However, commercial CaP coatings via plasma spraying display similar microstructures, and thus fail to provide specific implants according to different surgical conditions or skeletal bone sites. Herein, inspired by the formation of natural biominerals with various morphologies mediated by amorphous precursors, CaP coatings with tunable microstructures mediated by an amorphous metastable phase are fabricated. The microstructures of the coatings are precisely controlled by both polyaspartic acid and Mg2+ . The cell biological behaviors, including alkaline phosphatase activity, mineralization, and osteogenesis-related genes expression, on the CaP coatings with different microstructures, exhibit significant differences. Furthermore, in vivo experiments demonstrate the osseointegration in different types of rats and bones indeed favors different CaP coatings. This biomimetic strategy can be used to fabricate customized bone implants that can meet the specific requirements of various surgery conditions.


Assuntos
Fosfatase Alcalina , Materiais Revestidos Biocompatíveis , Animais , Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Osseointegração , Ratos , Propriedades de Superfície , Titânio/química
7.
Adv Mater ; 33(36): e2100074, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34297448

RESUMO

The high viscosity and low fluidity of heavy crude oil hinder its sorption by conventional porous sorbents, so the efficient clean-up of such heavy crude oil spills is challenging. Recently, Joule heating has been emerging as a new tool to reduce the viscosity of heavy crude oil dramatically. However, this direct-contact heating approach presents a potential risk due to the high voltage applied. To develop a non-contact recovery of viscous crude oil, here, a new approach for the fabrication of a series of ferrimagnetic sponges (FMSs) with hydrophobic porous channels is reported, whose surface can be remotely heated to 120 °C within 10 s under an alternating magnetic field (f = 274 kHz, H = 30 kA m-1 ). Compared with the solar-driven superficial heating, the integral magnetic heating in FMSs can result in a higher internal temperature of the sponges because of the confinement of thermal transport in the porous channels, which contributes to a dramatic decrease in oil viscosity and a significant increase in oil flow into the pores of FMSs. Furthermore, FMSs assembled with a self-priming pump can achieve continuous recovery of viscous crude oil (33.05 g h-1 cm-2 ) via remotely magnetic heating.

8.
Nat Commun ; 12(1): 4297, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262049

RESUMO

Self-healability is essential for supercapacitors to improve their reliability and lifespan when powering the electronics. However, the lack of a universal healing mechanism leads to low capacitive performance and unsatisfactory intelligence. Here, we demonstrate a multi-responsive healable supercapacitor with integrated configuration assembled from magnetic Fe3O4@Au/polyacrylamide (MFP) hydrogel-based electrodes and electrolyte and Ag nanowire films as current collectors. Beside a high mechanical strength, MFP hydrogel exhibits fast optical and magnetic healing properties arising from distinct photothermal and magneto-thermal triggered interfacial reconstructions. By growing electroactive polypyrrole nanoparticles into MFP framework as electrodes, the assembled supercapacitor exhibits triply-responsive healing performance under optical, electrical and magnetic stimuli. Notably, the device delivers a highest areal capacitance of 1264 mF cm-2 among the reported healable supercapacitors and restores ~ 90% of initial capacitances over ten healing cycles. These prominent performance advantages along with the facile device-assembly method make this emerging supercapacitor highly potential in the next-generation electronics.

9.
Nat Commun ; 11(1): 4789, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963247

RESUMO

Hydroxide exchange membrane fuel cells offer possibility of adopting platinum-group-metal-free catalysts to negotiate sluggish oxygen reduction reaction. Unfortunately, the ultrafast hydrogen oxidation reaction (HOR) on platinum decreases at least two orders of magnitude by switching the electrolytes from acid to base, causing high platinum-group-metal loadings. Here we show that a nickel-molybdenum nanoalloy with tetragonal MoNi4 phase can catalyze the HOR efficiently in alkaline electrolytes. The catalyst exhibits a high apparent exchange current density of 3.41 milliamperes per square centimeter and operates very stable, which is 1.4 times higher than that of state-of-the-art Pt/C catalyst. With this catalyst, we further demonstrate the capability to tolerate carbon monoxide poisoning. Marked HOR activity was also observed on similarly designed WNi4 catalyst. We attribute this remarkable HOR reactivity to an alloy effect that enables optimum adsorption of hydrogen on nickel and hydroxyl on molybdenum (tungsten), which synergistically promotes the Volmer reaction.

10.
Sci Adv ; 6(18): eaax1346, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494659

RESUMO

The rapid development of treatment resistance in tumors poses a technological bottleneck in clinical oncology. Ferroptosis is a form of regulated cell death with clinical translational potential, but the efficacy of ferroptosis-inducing agents is susceptible to many endogenous factors when administered alone, for which some cooperating mechanisms are urgently required. Here, we report an amorphous calcium carbonate (ACC)-based nanoassembly for tumor-targeted ferroptosis therapy, in which the totally degradable ACC substrate could synergize with the therapeutic interaction between doxorubicin (DOX) and Fe2+. The nanoplatform was simultaneously modified by dendrimers with metalloproteinase-2 (MMP-2)-sheddable PEG or targeting ligands, which offers the functional balance between circulation longevity and tumor-specific uptake. The therapeutic cargo could be released intracellularly in a self-regulated manner through acidity-triggered degradation of ACC, where DOX could amplify the ferroptosis effects of Fe2+ by producing H2O2. This nanoformulation has demonstrated potent ferroptosis efficacy and may offer clinical promise.


Assuntos
Carbonato de Cálcio/química , Ferroptose , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Peróxido de Hidrogênio , Ferro , Metaloproteinase 2 da Matriz , Microambiente Tumoral
11.
Natl Sci Rev ; 7(4): 723-736, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34692091

RESUMO

As a non-invasive therapeutic method without penetration-depth limitation, magnetic hyperthermia therapy (MHT) under alternating magnetic field (AMF) is a clinically promising thermal therapy. However, the poor heating conversion efficiency and lack of stimulus-response obstruct the clinical application of magnetofluid-mediated MHT. Here, we develop a ferrimagnetic polyethylene glycol-poly(2-hexoxy-2-oxo-1,3,2-dioxaphospholane) (mPEG-b-PHEP) copolymer micelle loaded with hydrophobic iron oxide nanocubes and emodin (denoted as EMM). Besides an enhanced magnetic resonance (MR) contrast ability (r 2 = 271 mM-1 s-1) due to the high magnetization, the specific absorption rate (2518 W/g at 35 kA/m) and intrinsic loss power (6.5 nHm2/kg) of EMM are dozens of times higher than the clinically available iron oxide nanoagents (Feridex and Resovist), indicating the high heating conversion efficiency. Furthermore, this composite micelle with a flowable core exhibits a rapid response to magnetic hyperthermia, leading to an AMF-activated supersensitive drug release. With the high magnetic response, thermal sensitivity and magnetic targeting, this supersensitive ferrimagnetic nanocomposite realizes an above 70% tumor cell killing effect at an extremely low dosage (10 µg Fe/mL), and the tumors on mice are completely eliminated after the combined MHT-chemotherapy.

12.
Angew Chem Int Ed Engl ; 59(7): 2705-2709, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31821685

RESUMO

The general synthesis and control of the coordination environment of single-atom catalysts (SACs) remains a great challenge. Herein, a general host-guest cooperative protection strategy has been developed to construct SACs by introducing polypyrrole (PPy) into a bimetallic metal-organic framework. As an example, the introduction of Mg2+ in MgNi-MOF-74 extends the distance between adjacent Ni atoms; the PPy guests serve as N source to stabilize the isolated Ni atoms during pyrolysis. As a result, a series of single-atom Ni catalysts (named NiSA -Nx -C) with different N coordination numbers have been fabricated by controlling the pyrolysis temperature. Significantly, the NiSA -N2 -C catalyst, with the lowest N coordination number, achieves high CO Faradaic efficiency (98 %) and turnover frequency (1622 h-1 ), far superior to those of NiSA -N3 -C and NiSA -N4 -C, in electrocatalytic CO2 reduction. Theoretical calculations reveal that the low N coordination number of single-atom Ni sites in NiSA -N2 -C is favorable to the formation of COOH* intermediate and thus accounts for its superior activity.

13.
Nat Commun ; 10(1): 2799, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243269

RESUMO

The incorporation of defects, such as vacancies, into functional materials could substantially tailor their intrinsic properties. Progress in vacancy chemistry has enabled advances in many technological applications, but creating new type of vacancies in existing material system remains a big challenge. We show here that ionized nitrogen plasma can break bonds of iron-carbon-nitrogen-nickel units in nickel-iron Prussian blue analogues, forming unconventional carbon-nitrogen vacancies. We study oxygen evolution reaction on the carbon-nitrogen vacancy-mediated Prussian blue analogues, which exhibit a low overpotential of 283 millivolts at 10 milliamperes per square centimeter in alkali, far exceeding that of original Prussian blue analogues and previously reported oxygen evolution catalysts with vacancies. We ascribe this enhancement to the in-situ generated nickel-iron oxy(hydroxide) active layer during oxygen evolution reaction, where the Fe leaching was significantly suppressed by the unconventional carbon-nitrogen vacancies. This work opens up opportunities for producing vacancy defects in nanomaterials for broad applications.

14.
J Am Chem Soc ; 141(18): 7537-7543, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31017425

RESUMO

The design of highly efficient non-noble-metal electrocatalysts for large-scale hydrogen production remains an ongoing challenge. We report here a Ni2P nanoarray catalyst grown on a commercial Ni foam substrate, which demonstrates an outstanding electrocatalytic activity and stability in basic electrolyte. The high catalytic activity can be attributed to the favorable electron transfer, superior intrinsic activity, and the intimate connection between the nanoarrays and their substrate. Moreover, the unique "superaerophobic" surface feature of the Ni2P nanoarrays enables a remarkable capability to withstand internal and external forces and release the in situ generated H2 bubbles in a timely manner at large current densities (such as >1000 mA cm-2) where the hydrogen evolution becomes vigorous. Our results highlight that an aerophobic structure is essential to catalyze gas evolution for large-scale practical applications.

15.
Adv Mater ; 31(19): e1900573, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30920707

RESUMO

In addition to a high specific capacitance, a large stretchability and self-healing properties are also essential to improve the practicality and reliability of supercapacitors in portable and wearable electronics. However, the integration of multiple functions into one device remains challenging. Here, the construction of a highly stretchable and real-time omni-healable supercapacitor is demonstrated by sandwiching the polypyrrole-incorporated gold nanoparticle/carbon nanotube (CNT)/poly(acrylamide) (GCP@PPy) hydrogel electrodes with a CNT-free GCP (GP) hydrogel as the electrolyte and chemically soldering an Ag nanowire film to the hydrogel electrode as the current collector. The newly developed dynamic metal-thiolate (M-SR, M = Au, Ag) bond-induced integrated configuration, with an intrinsically powerful electrode and electrolyte, enables the assembled supercapacitor to deliver an areal capacitance of 885 mF cm-2 and an energy density of 123 µWh cm-2 , which are among the highest-reported values for stretchable supercapacitors. Notably, the device exhibits a superhigh stretching strain of 800%, rapid optical healing capability, and significant real-time healability during the charge-discharge process. The exceptional performance combined with the facile assembly method confirms this multifunctional device as the best performer among all the flexible supercapacitors reported to date.

16.
Angew Chem Int Ed Engl ; 57(47): 15445-15449, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30281194

RESUMO

Transition-metal phosphides have stimulated great interest as catalysts to drive the hydrogen evolution reaction (HER), but their use as bifunctional catalytic electrodes that enable efficient neutral-pH water splitting has rarely been achieved. Herein, we report the synthesis of ternary Ni0.1 Co0.9 P porous nanosheets onto conductive carbon fiber paper that can efficiently and robustly catalyze both the HER and water oxidation in 1 m phosphate buffer (PBS; pH 7) electrolyte under ambient conditions. A water electrolysis cell comprising the Ni0.1 Co0.9 P electrodes demonstrates remarkable activity and stability for the electrochemical splitting of neutral-pH water. We attribute this performance to the new ternary Ni0.1 Co0.9 P structure with porous surfaces and favorable electronic states resulting from the synergistic interplay between nickel and cobalt. Ternary metal phosphides hold promise as efficient and low-cost catalysts for neutral-pH water splitting devices.

17.
Sci Adv ; 4(8): eaat7223, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30105307

RESUMO

Woods provide bioinspiration for engineering materials due to their superior mechanical performance. We demonstrate a novel strategy for large-scale fabrication of a family of bioinspired polymeric woods with similar polyphenol matrix materials, wood-like cellular microstructures, and outstanding comprehensive performance by a self-assembly and thermocuring process of traditional resins. In contrast to natural woods, polymeric woods demonstrate comparable mechanical properties (a compressive yield strength of up to 45 MPa), preferable corrosion resistance to acid with no decrease in mechanical properties, and much better thermal insulation (as low as ~21 mW m-1 K-1) and fire retardancy. These bioinspired polymeric woods even stand out from other engineering materials such as cellular ceramic materials and aerogel-like materials in terms of specific strength and thermal insulation properties. The present strategy provides a new possibility for mass production of a series of high-performance biomimetic engineering materials with hierarchical cellular microstructures and remarkable multifunctionality.

18.
Angew Chem Int Ed Engl ; 57(15): 4020-4024, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29442419

RESUMO

Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition-metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub-2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft-template mediated colloidal synthesis of Fe-doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1-dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm-2 in 0.1 m KOH, as well as remarkable long-term stability, representing one of the most efficient noble-metal-free catalysts.

19.
Langmuir ; 34(9): 2942-2951, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29433306

RESUMO

Like their biogenic counterparts, synthetic minerals with hierarchical architectures should exhibit multiple structural functions, which nicely bridge the boundaries between engineering and functional materials. Nevertheless, design of bioinspired mineralization approaches to thin coatings with distinct micro/nanotextures remains challenging in the realm of materials chemistry. Herein, a general morphosynthetic method based on seeded mineralization was extended to achieve prismatic-type thin CaCO3 coatings on fibrous substrates for oil/water separation applications. Distinct micro/nanotextures of the overlayers could be obtained in mineralization processes in the presence of different soluble (bio)macromolecules. These hierarchical thin coatings therefore exhibit multiple structural functions including underwater superoleophobicity, ultralow adhesion force of oil in water, and comparable stiffness/strength to the prismatic-type biominerals found in mollusk shells. Moreover, this controllable approach could proceed on fibrous substrates to obtain robust thin coatings, so that a modified nylon mesh could be employed for oil/water separation driven by gravity. Our bioinspired approach based on seeded mineralization opens the door for the deposition of hierarchical mineralized thin coatings exhibiting multiple structural functions on planar and fibrous substrates. This bottom-up strategy could be readily extended for the syntheses of advanced thin coatings with a broad spectrum of engineering and functional constituents.

20.
RSC Adv ; 8(52): 29495-29498, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35547310

RESUMO

A novel type of melamine formaldehyde microcapsule with a desirable barrier has been used to encapsulate water soluble ingredients, including potassium chloride (KCl) and allura red (dye) as models of an inorganic salt and organic molecule, respectively, via a facile method, and it has shown a sustained release of KCl and allura red for 12 h and 10 days in aqueous environment, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA