Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902071

RESUMO

Tea plants have adapted to grow in tropical acidic soils containing high concentrations of aluminum (Al) and fluoride (F) (as Al/F hyperaccumulators) and use secret organic acids (OAs) to acidify the rhizosphere for acquiring phosphorous and element nutrients. The self-enhanced rhizosphere acidification under Al/F stress and acid rain also render tea plants prone to accumulate more heavy metals and F, which raises significant food safety and health concerns. However, the mechanism behind this is not fully understood. Here, we report that tea plants responded to Al and F stresses by synthesizing and secreting OAs and altering profiles of amino acids, catechins, and caffeine in their roots. These organic compounds could form tea-plant mechanisms to tolerate lower pH and higher Al and F concentrations. Furthermore, high concentrations of Al and F stresses negatively affected the accumulation of tea secondary metabolites in young leaves, and thereby tea nutrient value. The young leaves of tea seedlings under Al and F stresses also tended to increase Al and F accumulation in young leaves but lower essential tea secondary metabolites, which challenged tea quality and safety. Comparisons of transcriptome data combined with metabolite profiling revealed that the corresponding metabolic gene expression supported and explained the metabolism changes in tea roots and young leaves via stresses from high concentrations of Al and F. The study provides new insight into Al- and F-stressed tea plants with regard to responsive metabolism changes and tolerance strategy establishment in tea plants and the impacts of Al/F stresses on metabolite compositions in young leaves used for making teas, which could influence tea nutritional value and food safety.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Fluoretos/metabolismo , Alumínio/metabolismo , Metabolismo Secundário , Plantas/metabolismo , Compostos Orgânicos/metabolismo , Folhas de Planta/metabolismo , Chá/metabolismo
2.
Hortic Res ; 8(1): 104, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33931613

RESUMO

The growth of leaves and biosynthesis of characteristic secondary metabolites are critically important for tea production and quality control. However, little is known about the coordinated regulation of leaf development and catechin biosynthesis in tea plants. Here, we reported that TCP TFs are involved in both catechin biosynthesis and leaf development. An integrated analysis of catechin profiling and CsTCP expression in different tissues of plants under various environmental conditions at different developmental stages indicated significant correlations between the transcript levels of CIN-type TCPs and catechin production. CIN-type CsTCP3 and CsTCP4 and PCF-type CsTCP14 interacted with the MYB-bHLH-WD40 repeat (MBW) complex by forming a CsTCP3-CsTT8 heterodimer and modulating the transactivation activity of the promoters of anthocyanin synthase (CsANS1) and anthocyanidin reductase (CsANR1). Four types of microRNA/target modules, miR319b/CsTCP3-4, miR164b/CsCUC, miR396/CsGRF-GIF, and miR165b/HD-ZIPIII ones, were also identified and characterized for their functions in the regulation of the development of tea plant shoot tips and leaf shape. The results of these modules were reflected by their different expression patterns in developing buds and leaves that had distinctly different morphologies in three different tea plant varieties. Their roles in the regulation of catechin biosynthesis were also further verified by manipulation of microRNA319b (miR319b), which targets the transcripts of CsTCP3 and CsTCP4. Thus, CsTCPs represent at least one of these important groups of TFs that can integrate tea plant leaf development together with secondary metabolite biosynthesis. Our study provides new insight into shoot tip development and catechin production in tea plants and lays a foundation for further mechanistic understanding of the regulation of tea plant leaf development and secondary metabolism.

3.
J Agric Food Chem ; 67(36): 10235-10244, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31436988

RESUMO

Tea provides a rich taste and has healthy properties due to its variety of bioactive compounds, such as theanine, catechins, and caffeine. Theanine is the most abundant free amino acid (40%-70%) in tea leaves. Key genes related to theanine biosynthesis have been studied, but relatively little is known about the regulatory mechanisms of theanine accumulation in tea leaves. Herein, we analyzed theanine content in tea (Camellia sinensis) and oil tea (Camellia oleifera) and found it to be higher in the roots than in other tissues in both species. The theanine content was significantly higher in tea than oil tea. To explore the regulatory mechanisms of theanine accumulation, we identified genes involved in theanine biosynthesis by RNA-Seq analysis and compared theanine-related modules. Moreover, we cloned theanine synthase (TS) promoters from tea and oil tea plants and found that a difference in TS expression and cis-acting elements may explain the difference in theanine accumulation between the two species. These data provide an important resource for regulatory mechanisms of theanine accumulation in tea plants.


Assuntos
Camellia sinensis/genética , Camellia/genética , Glutamatos/biossíntese , Proteínas de Plantas/genética , Transcriptoma , Camellia/química , Camellia/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Glutamatos/análise , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
4.
J Colloid Interface Sci ; 516: 332-341, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408121

RESUMO

We investigated a novel drug delivery system comprising nanoparticles based on galactosylated chitosan/graphene oxide/doxorubicin (GC-GO-DOX) for the therapeutic treatment of cancer. The drug delivery system was synthesized by loading a drug sample with galactosylated chitosan (GC) on a graphene oxide (GO) carrier. The results showed that the drug loading capacity was as high as 1.08 mg/mg (drug per polymer). The nanoparticles remained stable under physiological conditions, and the drug was released in a low pH environment (i.e., a tumor environment) and was pH-responsive. Cell uptake experiments and a cell proliferation analysis demonstrated that the nanoparticles had higher cytotoxicity for HepG2 and SMMC-7721 cells than chitosan/graphene oxide/doxorubicin (CS-GO-DOX) nanoparticles. Compared with CS-GO-DOX nanoparticles, the GC-GO-DOX nanoparticles exhibited a higher fluorescence intensity in tumor cells. In vivo anti-tumor experiments demonstrated that the GC-GO-DOX nanoparticles inhibit tumors better than the CS-GO-DOX nanoparticles. Nude mouse weight, tumor weight and tumor volume data indicated that the GC-GO-DOX tumor inhibition effect was better than that of the control group and the blank group. In summary, the nanoparticle investigated in this article is significant for tumor therapy.


Assuntos
Antineoplásicos/química , Quitosana/química , Portadores de Fármacos/química , Grafite/química , Nanopartículas/química , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Liberação Controlada de Fármacos , Galactose/química , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA