Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1868(11): 130703, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39163944

RESUMO

BACKGROUND: Immunotherapy is a powerful strategy for treating cancer and can be used to inhibit the post-surgical relapse of tumors. METHODS: To achieve this, a Cell@hydrogel was developed as a template using a mixture of CT26 tumor cells and Pluronic® F-127/gelatin. RESULTS: The proposed mixture has a solution-to-gelation functionality and vice versa. The morphology of the Cell@hydrogel was characterized by scanning electron microscopy and confocal microscopy. For photodynamic immunotherapy, the Cell@hydrogel was functionalized with Cy7 (Cy7-Cell@hydrogel) to quantify reactive oxygen species in CT26 tumor cells. Gel electrophoresis and membrane integrity tests were performed to determine the efficiency of the Cy7-Cell@hydrogel following photodynamic therapy. CONCLUSIONS: This protocol provides an alternative approach that mechanistically inhibits the post-surgical relapse of solid tumors based on immunotherapy.

2.
Int J Nanomedicine ; 18: 4555-4565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37581101

RESUMO

Introduction: Deinoxanthin (DX), a carotenoid, has excellent antioxidant and anti-inflammatory properties. However, owing to its lipophilicity, it is unfavorably dispersed in water and has low stability, limiting its application in cosmetics, food, and pharmaceuticals. Therefore, it is necessary to study nanoparticles to increase the loading capacity and stability of DX. Methods: In this study, DX-loaded nanocapsules (DX@NCs) were prepared by nanoprecipitation by loading DX into nanocapsules. The size, polydispersity index, surface charge, and morphology of DX@NCs were confirmed through dynamic light scattering and transmission electron microscopy. The loading content and loading efficiency of DX in DX@NCs were analyzed using high-performance liquid chromatography. The antioxidant activity of DX@NCs was evaluated by DPPH assay and in vitro ROS. The biocompatibility of DX@NCs was evaluated using an in vitro MTT assay. In vitro NO analysis was performed to determine the effective anti-inflammatory efficacy of DX@NCs. Results: DX@NCs exhibited increased stability and antioxidant efficacy owing to the improved water solubility of DX. The in situ and in vitro antioxidant activity of DX@NCs was higher than that of unloaded DX. In addition, it showed a strong anti-inflammatory effect by regulating the NO level in an in vitro cell model. Conclusion: This study presents a nanocarrier to improve the water-soluble dispersion and stability of DX. These results demonstrate that DX@NC is a carrier with excellent stability and has a high potential for use in cosmetic and pharmaceutical applications owing to its antioxidant and anti-inflammatory effects.


Assuntos
Antioxidantes , Nanocápsulas , Antioxidantes/farmacologia , Nanocápsulas/química , Carotenoides , Anti-Inflamatórios/farmacologia
3.
Pharmaceutics ; 15(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37242674

RESUMO

Cancer remains a major global health challenge. Traditional chemotherapy often results in side effects and drug resistance, necessitating the development of alternative treatment strategies such as gene therapy. Mesoporous silica nanoparticles (MSNs) offer many advantages as a gene delivery carrier, including high loading capacity, controlled drug release, and easy surface functionalization. MSNs are biodegradable and biocompatible, making them promising candidates for drug delivery applications. Recent studies demonstrating the use of MSNs for the delivery of therapeutic nucleic acids to cancer cells have been reviewed, along with their potential as a tool for cancer therapy. The major challenges and future interventions of MSNs as gene delivery carriers for cancer therapy are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA