Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 131: 111820, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508092

RESUMO

Exogenous hydrogen peroxide (H2O2) may generate excessive oxidative stress, inducing renal cell apoptosis related with kidney dysfunction. Geniposide (GP) belongs to the iridoid compound with anti-inflammatory, antioxidant and anti-apoptotic effects. This study aimed to observe the intervention effect of GP on H2O2-induced apoptosis in human kidney-2 (HK-2) cells and to explore its potential mechanism in relation to N6-methyladenosine (m6A) RNA methylation. Cell viability, apotosis rate and cell cycle were tested separately after different treatments. The mRNA and protein levels of m6A related enzymes and phosphoinositide 3-kinase (PI3K)/a serine/threonine-specific protein kinase 3 (AKT3)/forkhead boxo 1 (FOXO1) and superoxide dismutase 2 (SOD2) were detected by reverse transcription-quantitative real-time PCR (RT-qPCR) and Western blot. The whole m6A methyltransferase activity and the m6A content were measured by ELISA-like colorimetric methods. The changes of m6A methylation levels of PI3K/AKT3/FOXO1 and SOD2 were determined by methylated RNA immunoprecipitation (MeRIP)-qPCR. Multiple comparisons were performed by ANOVA with Turkey's post hoc test. Exposed to 400 µmol/L H2O2, cells were arrested in G1 phase and the apoptosis rate increased, which were significantly alleviated by GP. Compared with the H2O2 apoptosis group, both the whole m6A RNA methyltransferase activity and the m6A contents were increased due to GP intervention. Besides, the SOD2 protein was increased, while PI3K and FOXO1 decreased. The m6A methylation level of AKT3 was negatively correlated with its protein level. Taken together, GP affects the global m6A methylation microenvironment and regulates the expression of PI3K/AKT3/FOXO1 signaling pathway via m6A modification, alleviating cell cycle arrest and apoptosis caused by oxidative stress in HK-2 cells with a good application prospect.


Assuntos
Adenina , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Humanos , Peróxido de Hidrogênio , Rim , Iridoides/farmacologia , Apoptose , Estresse Oxidativo , RNA , Metiltransferases , Proteína Forkhead Box O1 , Proteínas Proto-Oncogênicas c-akt
2.
BMC Cancer ; 24(1): 280, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429653

RESUMO

OBJECTIVE: The risk category of gastric gastrointestinal stromal tumors (GISTs) are closely related to the surgical method, the scope of resection, and the need for preoperative chemotherapy. We aimed to develop and validate convolutional neural network (CNN) models based on preoperative venous-phase CT images to predict the risk category of gastric GISTs. METHOD: A total of 425 patients pathologically diagnosed with gastric GISTs at the authors' medical centers between January 2012 and July 2021 were split into a training set (154, 84, and 59 with very low/low, intermediate, and high-risk, respectively) and a validation set (67, 35, and 26, respectively). Three CNN models were constructed by obtaining the upper and lower 1, 4, and 7 layers of the maximum tumour mask slice based on venous-phase CT Images and models of CNN_layer3, CNN_layer9, and CNN_layer15 established, respectively. The area under the receiver operating characteristics curve (AUROC) and the Obuchowski index were calculated to compare the diagnostic performance of the CNN models. RESULTS: In the validation set, CNN_layer3, CNN_layer9, and CNN_layer15 had AUROCs of 0.89, 0.90, and 0.90, respectively, for low-risk gastric GISTs; 0.82, 0.83, and 0.83 for intermediate-risk gastric GISTs; and 0.86, 0.86, and 0.85 for high-risk gastric GISTs. In the validation dataset, CNN_layer3 (Obuchowski index, 0.871) provided similar performance than CNN_layer9 and CNN_layer15 (Obuchowski index, 0.875 and 0.873, respectively) in prediction of the gastric GIST risk category (All P >.05). CONCLUSIONS: The CNN based on preoperative venous-phase CT images showed good performance for predicting the risk category of gastric GISTs.


Assuntos
Tumores do Estroma Gastrointestinal , Neoplasias Gástricas , Humanos , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Tumores do Estroma Gastrointestinal/cirurgia , Tomografia Computadorizada por Raios X/métodos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/cirurgia , Redes Neurais de Computação , Curva ROC
3.
Food Chem Toxicol ; 182: 114158, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940031

RESUMO

Geniposide (GP) is the homology of medicine and food with bioactive effects of antioxidation and resistance to apoptosis in the liver. It's of great significance to explore the biosafety exposure limits and action mechanisms of GP. This study detected the global DNA methylation microenvironment and the regulation of specific genes in GP against cellular apoptosis induced by hydrogen peroxide (H2O2) of human hepatocyte L-02 cells. The half inhibitory concentration (IC50) of GP on normal L-02 cells was 57.7 mg/mL. GP exerted new epigenetic activity, increased DNMT1, decreased TET1 and TET2 expression, and reversed the demethylation effect to some extent, thereby increasing the overall genomic DNA methylation level at the concentration of 900 µg/mL. GP pretreatment could also adjust the level of P53, Bcl-2 and AKT altered by H2O2, reducing their specific DNA methylation levels in the promoter regions of AKT and Bcl-2 to inhibit apoptosis. Taken together, GP regulates the global DNA methylation level and controls the expression changes of P53, Bcl-2 and AKT, jointly inhibiting the occurrence of apoptosis in human hepatocytes and providing the newly theoretical references for its safety evaluation.


Assuntos
Metilação de DNA , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Hepatócitos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/farmacologia , Proteínas Proto-Oncogênicas/genética
4.
Front Pharmacol ; 13: 925264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105184

RESUMO

Nonalcoholic fatty liver disease (NAFLD), one of the risk factors for hepatitis, cirrhosis, and even hepatic carcinoma, has been a global public health problem. The polyphenol compound theaflavin-3,3'-digallate (TF3), mainly extracted from black tea, has been reported to produce an effect on hypoglycemic and antilipid deposition in vitro. In our study, we further investigated the function and novel mechanisms of TF3 in protecting NAFLD in vivo. By using leptin-deficient obese (ob/ob) mice with NAFLD symptoms, TF3 treatment prevented body weight and waistline gain, reduced lipid accumulation, and alleviated liver function injury, as well as decreased serum lipid levels and TG levels in livers in ob/ob mice, observing no side effects. Furthermore, the transcriptome sequencing of liver tissue showed that TF3 treatment corrected the expression profiles of livers in ob/ob mice compared with that of the model group. It is interesting to note that TF3 might regulate lipid metabolism via the Fads1/PPARδ/Fabp4 axis. In addition, 16S rRNA sequencing demonstrated that TF3 increased the abundance of Prevotellaceae_UCG-001, norank_f_Ruminococcaceae, and GCA-900066575 and significantly decreased that of Parvibacter. Taken together, the effect of TF3 on NAFLD might be related to lipid metabolism regulated by the Fads1/PPARδ/Fabp4 axis and gut microbiota. TF3 might be a promising candidate for NAFLD therapy.

5.
Front Pharmacol ; 13: 973116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120320

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become a major chronic disease in contemporary society, affected by N6-methyladenosine (m6A) RNA methylation, one of the most common RNA modifications. Compared with healthy control, m6A RNA methyltransferase 3 (METTL3) and METTL14 increased, while Wilms tumor 1-associated protein (WTAP) and RNA-binding motif protein 15 (RBM15) decreased significantly in NAFLD, and the m6A demethylases fat mass and obesity-associated protein (FTO) elevated. Meanwhile, the m6A binding proteins, YT521-B homology (YTH) domain-containing 1 (YTHDC1), YTHDC2, insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1), heterogeneous nuclear ribonucleoprotein C (HNRNPC), and HNRNPA2B1 were decreased, while eukaryotic translation initiation factor 3 subunit H (EIF3H) was increased significantly. All these changes of m6A regulators had significant differences between healthy control and NAFLD, but no differences between the NAFL and NASH group. The expression level of RBM15, HNRNPC, and HNRNPA2B1 were related to body fat index. RBM15, YTHDC2, HNRNPC, HNRNPA2B1, and EIF3H were related to steatosis. Also, KIAA1429 and YTH domain family 1 (YTHDF1) were related to lobular inflammation. Taken together, m6A regulators were involved in the occurrence of NAFLD. More importantly, abnormal MYC was determined as a key link to m6A regulation of NAFLD. The higher MYC mRNA level was accompanied by higher HDL cholesterol and unsaturated fatty acid proportions, as well as lower fat mass, glucose, and transaminase. Taken together, dysregulation of m6A methylation caused steatosis and fibrosis, affecting the occurrence of NAFLD, and MYC might be its potential target.

6.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142676

RESUMO

Alzheimer's disease (AD) is one of the most common forms of dementia, closely related to epigenetic factors. N6-methyladenosine (m6A) is the most abundant RNA modification, affecting the pathogenesis and development of neurodegenerative diseases. This study was the first exploration of the combined role of 25 common m6A RNA methylation regulators in AD through the integrated bioinformatics approaches. The 14 m6A regulators related to AD were selected by analyzing differences between AD patients and normal controls. Based on the selected m6A regulators, AD patients could be well classified into two m6A models using consensus clustering. The two clusters of patients had different immune profiles, and m6A regulators were associated with the components of immune cells. Additionally, there were 19 key AD genes obtained by screening differential genes through weighted gene co-expression network and least absolute shrinkage and selection operator regression analysis, which were highly associated with important m6A regulators during the occurrence of AD. More interestingly, NOTCH2 and NME1 could be potential targets for m6A regulation of AD. Taken together, these findings indicate that dysregulation of m6A methylation affects the occurrence of AD and is vital for the subtype classification and immune infiltration of AD.


Assuntos
Doença de Alzheimer , Adenosina/metabolismo , Doença de Alzheimer/genética , Biologia Computacional , Humanos , Metilação , RNA/genética , RNA/metabolismo
7.
Ecotoxicol Environ Saf ; 236: 113494, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413622

RESUMO

Cadmium could induce cell apoptosis, probably related to the dysfunction of the mitochondrial respiratory chain. The human renal proximal tubule (HK-2) was used to explore the mechanism of mitochondrial respiratory chain dysfunction during apoptosis induced by cadmium chloride (CdCl2). Cell viability was evaluated by cell proliferation assay and different concentrations of 60, 80 and 100 µM were selected to evaluate the mitochondrial toxicity of CdCl2 respectively. Under the CdCl2 treatment for 24 h, the mitochondrial reactive oxygen species (ROS) of HK-2 cells increased and the superoxide dismutase (SOD) activity was inhibited at the above three concentrations separately. Both ATP content and mitochondrial membrane potential decreased significantly at 100 µM concentration. The levels of procaspase-3 and Bcl-2 had fallen in a concentration-dependent manner and Bax was significantly increased at 60, 80 and 100 µM concentration compared with no CdCl2 treatment respectively, which activated the mitochondrial apoptosis pathway. N-acetyl-cysteine (NAC) could partially resist CdCl2-induced cell apoptosis, while myxothiazol (Myx) promoted the process. Mitochondria relative alterations manifested as inhibition of complex III and V. In addition, both the quantity of mitochondrial coenzyme Q-binding protein CoQ10 homolog B (CoQ10B) and cytochrome c (Cyt c) had decreased significantly. Taken together, CdCl2 induced HK-2 apoptosis due to the mitochondrial respiratory chain dysfunction by reducing the CoQ10B level, offering a novel evaluating indicator for the environmental toxicity of CdCl2.


Assuntos
Apoptose , Cloreto de Cádmio , Cádmio/toxicidade , Cloreto de Cádmio/toxicidade , Transporte de Elétrons , Humanos , Potencial da Membrana Mitocondrial , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
8.
Ecotoxicol Environ Saf ; 216: 112204, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33845364

RESUMO

The mitoepigenetic modifications may be closely related to cellular fate. Both the replicative and hydrogen peroxide (H2O2)-induced premature senescence models were used to detect the mitochondrial biological characteristics and the epigenetic factors during senescence of human embryonic lung fibroblasts. The mitochondrial quantity was decreased in two senescence stages, while the mitochondrial DNA (mtDNA) copy number was increased significantly and the methyltransferases activity likewise. And the acute mtROS accumulation could launch premature senescence. Later, the persistent premature senescence owned the higher level of adenosine triphosphate (ATP) and mitochondrial 5-methylcytosine (mt-5-mC), and the less level of 8-hydroxydeoxyguanosine (8-OHdG) than those of replicative senescence. The mtDNA methylation-related enzymes, binding protein and the mitochondrial transcription regulators presented the differentially expressed profiles in both senescent states. Interestingly, the hypermethylation in the CpG region of mitochondrial transcription factor B2 (TFB2M) contributed to its downregulation of mRNA level in replicative senescence. The alterations of the mitochondrial biological functions and mtDNA features would be novel candidate biomarkers involved in cellular senescence. The specific methylation status of mtDNA may also have a crosstalk with oxidative stress to the mitochondrial function, contributing to cellular senescence.

9.
Microbiol Immunol ; 63(8): 303-315, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31218724

RESUMO

We investigated the correlation between the beneficial effect of Lactobacillus acidophilus on gut microbiota composition, metabolic activities, and reducing cow's milk protein allergy. Mice sensitized with ß-lactoglobulin (ß-Lg) were treated with different doses of L. acidophilus KLDS 1.0738 for 4 weeks, starting 1 week before allergen induction. The results showed that intake of L. acidophilus significantly suppressed the hypersensitivity responses, together with increased fecal microbiota diversity and short-chain fatty acids (SCFAs) concentration (including propionate, butyrate, isobutyrate, and isovalerate) when compared with the allergic group. Moreover, treatment with L. acidophilus induced the expression of SCFAs receptors, G-protein-coupled receptors 41 (GPR41) and 43 (GPR43), in the spleen and colon of the allergic mice. Further analysis revealed that the GPR41 and GPR43 messenger RNA expression both positively correlated with the serum concentrations of transforming growth factor-ß and IFN-γ (p < .05), but negatively with the serum concentrations of IL-17, IL-4, and IL-6 in the L. acidophilus-treated group compared with the allergic group (p < .05). These results suggested that L. acidophilus protected against the development of allergic inflammation by improving the intestinal flora, as well as upregulating SCFAs and their receptors GPR41/43.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Intestinos/microbiologia , Lactobacillus acidophilus/fisiologia , Lactoglobulinas/efeitos adversos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Butiratos/metabolismo , Colo/metabolismo , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Hemiterpenos , Interferon gama/metabolismo , Interleucina-17/sangue , Interleucina-4/sangue , Interleucina-6/sangue , Isobutiratos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Hipersensibilidade a Leite/terapia , Proteínas do Leite , Ácidos Pentanoicos/metabolismo , Propionatos/metabolismo , RNA Mensageiro/metabolismo , Baço/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA